BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 26260025)

  • 1. Depletion force induced collective motion of microtubules driven by kinesin.
    Inoue D; Mahmot B; Kabir AM; Farhana TI; Tokuraku K; Sada K; Konagaya A; Kakugo A
    Nanoscale; 2015 Nov; 7(43):18054-61. PubMed ID: 26260025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monopolar flocking of microtubules in collective motion.
    Afroze F; Inoue D; Farhana TI; Hiraiwa T; Akiyama R; Kabir AMR; Sada K; Kakugo A
    Biochem Biophys Res Commun; 2021 Jul; 563():73-78. PubMed ID: 34062389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the Rigidity of Kinesin-Propelled Microtubules in an
    Kabir AMR; Munmun T; Hayashi T; Yasuda S; Kimura AP; Kinoshita M; Murata T; Sada K; Kakugo A
    ACS Omega; 2022 Feb; 7(4):3796-3803. PubMed ID: 35128287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinesin-Recruiting Microtubules Exhibit Collective Gliding Motion while Forming Motor Trails.
    Tsitkov S; Song Y; Rodriguez JB; Zhang Y; Hess H
    ACS Nano; 2020 Dec; 14(12):16547-16557. PubMed ID: 33054177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Velocity Fluctuations in Kinesin-1 Gliding Motility Assays Originate in Motor Attachment Geometry Variations.
    Palacci H; Idan O; Armstrong MJ; Agarwal A; Nitta T; Hess H
    Langmuir; 2016 Aug; 32(31):7943-50. PubMed ID: 27414063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling Collective Motion of Kinesin-Driven Microtubules via Patterning of Topographic Landscapes.
    Araki S; Beppu K; Kabir AMR; Kakugo A; Maeda YT
    Nano Lett; 2021 Dec; 21(24):10478-10485. PubMed ID: 34874725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective motion of driven semiflexible filaments tuned by soft repulsion and stiffness.
    Moore JM; Thompson TN; Glaser MA; Betterton MD
    Soft Matter; 2020 Oct; 16(41):9436-9442. PubMed ID: 32959862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic kinesin-1 clustering on microtubules due to mutually attractive interactions.
    Roos WH; Campàs O; Montel F; Woehlke G; Spatz JP; Bassereau P; Cappello G
    Phys Biol; 2008 Nov; 5(4):046004. PubMed ID: 19029597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dynamical model of kinesin-microtubule motility assays.
    Gibbons F; Chauwin JF; Despósito M; José JV
    Biophys J; 2001 Jun; 80(6):2515-26. PubMed ID: 11371430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Setting up roadblocks for kinesin-1: mechanism for the selective speed control of cargo carrying microtubules.
    Korten T; Diez S
    Lab Chip; 2008 Sep; 8(9):1441-7. PubMed ID: 18818797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact-Free Measurement of Microtubule Rotations on Kinesin and Cytoplasmic-Dynein Coated Surfaces.
    Mitra A; Ruhnow F; Nitzsche B; Diez S
    PLoS One; 2015; 10(9):e0136920. PubMed ID: 26368807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity.
    Grover R; Fischer J; Schwarz FW; Walter WJ; Schwille P; Diez S
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7185-E7193. PubMed ID: 27803325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nano-needle/microtubule composite gliding on a kinesin-coated surface for target molecule transport.
    Tarhan MC; Yokokawa R; Bottier C; Collard D; Fujita H
    Lab Chip; 2010 Jan; 10(1):86-91. PubMed ID: 20024055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective control of gliding microtubule populations.
    Korten T; Birnbaum W; Kuckling D; Diez S
    Nano Lett; 2012 Jan; 12(1):348-53. PubMed ID: 22149218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of fractional steps in cargo movement by the collective operation of kinesin-1 motors.
    Leduc C; Ruhnow F; Howard J; Diez S
    Proc Natl Acad Sci U S A; 2007 Jun; 104(26):10847-52. PubMed ID: 17569782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in microtubule overlap length regulate kinesin-14-driven microtubule sliding.
    Braun M; Lansky Z; Szuba A; Schwarz FW; Mitra A; Gao M; Lüdecke A; Ten Wolde PR; Diez S
    Nat Chem Biol; 2017 Dec; 13(12):1245-1252. PubMed ID: 29035362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubule gliding and cross-linked microtubule networks on micropillar interfaces.
    Roos W; Ulmer J; Gräter S; Surrey T; Spatz JP
    Nano Lett; 2005 Dec; 5(12):2630-4. PubMed ID: 16351227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic guiding of motor-driven microtubules on electrically heated, smart polymer tracks.
    Schroeder V; Korten T; Linke H; Diez S; Maximov I
    Nano Lett; 2013 Jul; 13(7):3434-8. PubMed ID: 23750886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the gliding, fishtailing and circling motions of native microtubules.
    Weiss DG; Langford GM; Seitz-Tutter D; Maile W
    Acta Histochem Suppl; 1991; 41():81-105. PubMed ID: 1725829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single fungal kinesin motor molecules move processively along microtubules.
    Lakämper S; Kallipolitou A; Woehlke G; Schliwa M; Meyhöfer E
    Biophys J; 2003 Mar; 84(3):1833-43. PubMed ID: 12609885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.