BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26260238)

  • 1. Binding interaction of SGLT with sugar and thiosugar by the molecular dynamics simulation.
    Tamura Y; Miyagawa H; Yoshida T; Chuman H
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2799-804. PubMed ID: 26260238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural biology. Symmetric transporters for asymmetric transport.
    Karpowich NK; Wang DN
    Science; 2008 Aug; 321(5890):781-2. PubMed ID: 18687947
    [No Abstract]   [Full Text] [Related]  

  • 3. In vitro characterization of luseogliflozin, a potent and competitive sodium glucose co-transporter 2 inhibitor: Inhibition kinetics and binding studies.
    Uchida S; Mitani A; Gunji E; Takahashi T; Yamamoto K
    J Pharmacol Sci; 2015 May; 128(1):54-7. PubMed ID: 26003086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a second substrate-binding site in solute-sodium symporters.
    Li Z; Lee AS; Bracher S; Jung H; Paz A; Kumar JP; Abramson J; Quick M; Shi L
    J Biol Chem; 2015 Jan; 290(1):127-41. PubMed ID: 25398883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metadynamics simulations reveal a Na+ independent exiting path of galactose for the inward-facing conformation of vSGLT.
    Bisha I; Rodriguez A; Laio A; Magistrato A
    PLoS Comput Biol; 2014 Dec; 10(12):e1004017. PubMed ID: 25522004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport.
    Faham S; Watanabe A; Besserer GM; Cascio D; Specht A; Hirayama BA; Wright EM; Abramson J
    Science; 2008 Aug; 321(5890):810-4. PubMed ID: 18599740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2.
    Hummel CS; Lu C; Loo DD; Hirayama BA; Voss AA; Wright EM
    Am J Physiol Cell Physiol; 2011 Jan; 300(1):C14-21. PubMed ID: 20980548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural selectivity of human SGLT inhibitors.
    Hummel CS; Lu C; Liu J; Ghezzi C; Hirayama BA; Loo DD; Kepe V; Barrio JR; Wright EM
    Am J Physiol Cell Physiol; 2012 Jan; 302(2):C373-82. PubMed ID: 21940664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitor binding in the human renal low- and high-affinity Na+/glucose cotransporters.
    Pajor AM; Randolph KM; Kerner SA; Smith CD
    J Pharmacol Exp Ther; 2008 Mar; 324(3):985-91. PubMed ID: 18063724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A selectivity study of sodium-dependent glucose cotransporter 2/sodium-dependent glucose cotransporter 1 inhibitors by molecular modeling.
    Xu J; Yuan H; Ran T; Zhang Y; Liu H; Lu S; Xiong X; Xu A; Jiang Y; Lu T; Chen Y
    J Mol Recognit; 2015 Aug; 28(8):467-79. PubMed ID: 25753971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sodium/galactose symporter crystal structure is a dynamic, not so occluded state.
    Zomot E; Bahar I
    Mol Biosyst; 2010 Jun; 6(6):1040-6. PubMed ID: 20358053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The critical role of dimer formation in monosaccharides binding to human serum albumin.
    Pongprayoon P; Mori T
    Phys Chem Chem Phys; 2018 Jan; 20(5):3249-3257. PubMed ID: 29114672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water permeation through the sodium-dependent galactose cotransporter vSGLT.
    Choe S; Rosenberg JM; Abramson J; Wright EM; Grabe M
    Biophys J; 2010 Oct; 99(7):L56-8. PubMed ID: 20923633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local conformational changes in the Vibrio Na+/galactose cotransporter.
    Veenstra M; Lanza S; Hirayama BA; Turk E; Wright EM
    Biochemistry; 2004 Mar; 43(12):3620-7. PubMed ID: 15035632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of inhibition of the human SGLT2-MAP17 glucose transporter.
    Niu Y; Liu R; Guan C; Zhang Y; Chen Z; Hoerer S; Nar H; Chen L
    Nature; 2022 Jan; 601(7892):280-284. PubMed ID: 34880493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational transitions of the sodium-dependent sugar transporter, vSGLT.
    Paz A; Claxton DP; Kumar JP; Kazmier K; Bisignano P; Sharma S; Nolte SA; Liwag TM; Nayak V; Wright EM; Grabe M; Mchaourab HS; Abramson J
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):E2742-E2751. PubMed ID: 29507231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A gate-free pathway for substrate release from the inward-facing state of the Na⁺-galactose transporter.
    Li J; Tajkhorshid E
    Biochim Biophys Acta; 2012 Feb; 1818(2):263-71. PubMed ID: 21978597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar binding residue affects apparent Na+ affinity and transport stoichiometry in mouse sodium/glucose cotransporter type 3B.
    Díez-Sampedro A; Barcelona S
    J Biol Chem; 2011 Mar; 286(10):7975-7982. PubMed ID: 21187287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The sodium/iodide symporter: state of the art of its molecular characterization.
    Darrouzet E; Lindenthal S; Marcellin D; Pellequer JL; Pourcher T
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):244-53. PubMed ID: 23988430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitor binding mode and allosteric regulation of Na
    Bisignano P; Ghezzi C; Jo H; Polizzi NF; Althoff T; Kalyanaraman C; Friemann R; Jacobson MP; Wright EM; Grabe M
    Nat Commun; 2018 Dec; 9(1):5245. PubMed ID: 30532032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.