These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26260269)

  • 1. Comparative study of multi-enzyme production from typical agro-industrial residues and ultrasound-assisted extraction of crude enzyme in fermentation with Aspergillus japonicus PJ01.
    Li PJ; Xia JL; Shan Y; Nie ZY
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):2013-22. PubMed ID: 26260269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharification of orange peel wastes with crude enzymes from new isolated Aspergillus japonicus PJ01.
    Li PJ; Xia JL; Nie ZY; Shan Y
    Bioprocess Biosyst Eng; 2016 Mar; 39(3):485-92. PubMed ID: 26718204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Banana Peels: A Promising Substrate for the Coproduction of Pectinase and Xylanase from
    Zehra M; Syed MN; Sohail M
    Pol J Microbiol; 2020 Sep; 69(1):19-26. PubMed ID: 32189485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Surfactants and Microwave-assisted Pretreatment of Orange Peel on Extracellular Enzymes Production by Aspergillus japonicus PJ01.
    Li PJ; Xia JL; Shan Y; Nie ZY; Wang FR
    Appl Biochem Biotechnol; 2015 Jun; 176(3):758-71. PubMed ID: 25920331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran [corrected].
    Sapna ; Singh B
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1885-95. PubMed ID: 24879597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate.
    Mrudula S; Murugammal R
    Braz J Microbiol; 2011 Jul; 42(3):1119-27. PubMed ID: 24031730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo enzymatic digestion, in vitro xylanase digestion, metabolic analogues, surfactants and polyethylene glycol ameliorate laccase production from Ganoderma sp. kk-02.
    Sharma KK; Kapoor M; Kuhad RC
    Lett Appl Microbiol; 2005; 41(1):24-31. PubMed ID: 15960748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of a highly-stable fungal xylanase from
    Intasit R; Cheirsilp B; Suyotha W; Boonsawang P
    Prep Biochem Biotechnol; 2022; 52(3):311-317. PubMed ID: 34197716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pectinase production by a Brazilian thermophilic fungus Thermomucor indicae-seudaticae N31 in solid-state and submerged fermentation.
    Martin N; Guez MA; Sette LD; Da Silva R; Gomes E
    Mikrobiologiia; 2010; 79(3):321-8. PubMed ID: 20734812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of Pectate Lyase by Penicillium viridicatum RFC3 in Solid-State and Submerged Fermentation.
    Ferreira V; da Silva R; Silva D; Gomes E
    Int J Microbiol; 2010; 2010():. PubMed ID: 20689719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valorization of Palm Oil Industrial Waste as Feedstock for Lipase Production.
    Silveira EA; Tardioli PW; Farinas CS
    Appl Biochem Biotechnol; 2016 Jun; 179(4):558-71. PubMed ID: 26892007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of pectinase from deseeded sunflower head by Aspergillus niger in submerged and solid-state conditions.
    Patil SR; Dayanand A
    Bioresour Technol; 2006 Nov; 97(16):2054-8. PubMed ID: 16263274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotechnological potential of agro-industrial waste in the synthesis of pectin lyase from Aspergillus brasiliensis.
    Pili J; Danielli A; Nyari NL; Zeni J; Cansian RL; Backes GT; Valduga E
    Food Sci Technol Int; 2018 Mar; 24(2):97-109. PubMed ID: 28956454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation.
    Li Y; Peng X; Chen H
    J Biosci Bioeng; 2013 Oct; 116(4):493-8. PubMed ID: 23676362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The functional properties of a xyloglucanase (GH12) of Aspergillus terreus expressed in Aspergillus nidulans may increase performance of biomass degradation.
    Vitcosque GL; Ribeiro LF; de Lucas RC; da Silva TM; Ribeiro LF; de Lima Damasio AR; Farinas CS; Gonçalves AZ; Segato F; Buckeridge MS; Jorge JA; Polizeli ML
    Appl Microbiol Biotechnol; 2016 Nov; 100(21):9133-9144. PubMed ID: 27245677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of natamycin by Streptomyces gilvosporeus Z28 through solid-state fermentation using agro-industrial residues.
    Zeng X; Miao W; Zeng H; Zhao K; Zhou Y; Zhang J; Zhao Q; Tursun D; Xu D; Li F
    Bioresour Technol; 2019 Feb; 273():377-385. PubMed ID: 30453252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xylanase production by the thermophilic mold Humicola lanuginosa in solid-state fermentation.
    Kamra P; Satyanarayana T
    Appl Biochem Biotechnol; 2004 Nov; 119(2):145-57. PubMed ID: 15531785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of physicochemical parameters on the polygalacturonase of an Aspergillus sojae mutant using wheat bran, an agro-industrial waste, via solid-state fermentation.
    Demir H; Tari C
    J Sci Food Agric; 2016 Aug; 96(10):3575-82. PubMed ID: 26604188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of xylanase under solid-state fermentation by Aspergillus tubingensis JP-1 and its application.
    Pandya JJ; Gupte A
    Bioprocess Biosyst Eng; 2012 Jun; 35(5):769-79. PubMed ID: 22271252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi.
    Hölker U; Höfer M; Lenz J
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):175-86. PubMed ID: 14963614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.