These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26260674)

  • 1. Nanocontact Disorder in Nanoelectronics for Modulation of Light and Gas Sensitivities.
    Lin YF; Chang CH; Hung TC; Jian WB; Tsukagoshi K; Wu YH; Chang L; Liu Z; Fang J
    Sci Rep; 2015 Aug; 5():13035. PubMed ID: 26260674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of nanocontact on nanowire based nanoelectronics.
    Lin YF; Jian WB
    Nano Lett; 2008 Oct; 8(10):3146-50. PubMed ID: 18729520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy.
    Lee JA; Lim YR; Jung CS; Choi JH; Im HS; Park K; Park J; Kim GT
    Nanotechnology; 2016 Oct; 27(42):425711. PubMed ID: 27640642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocontact resistance and structural disorder induced resistivity variation in metallic metal-oxide nanowires.
    Lin YF; Wu ZY; Lin KC; Chen CC; Jian WB; Chen FR; Kai JJ
    Nanotechnology; 2009 Nov; 20(45):455401. PubMed ID: 19822926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifying the Interface Edge to Control the Electrical Transport Properties of Nanocontacts to Nanowires.
    Lord AM; Ramasse QM; Kepaptsoglou DM; Evans JE; Davies PR; Ward MB; Wilks SP
    Nano Lett; 2017 Feb; 17(2):687-694. PubMed ID: 28001420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-Dependent Electrical Transport Properties of Individual NiCo
    Jia C; Yang F; Zhao L; Cheng G; Yang G
    Nanoscale Res Lett; 2019 Jan; 14(1):10. PubMed ID: 30623246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of magnetic field on Mott's variable-range hopping parameters in multiwall carbon nanotube mat.
    Arya VP; Prasad V; Kumar PS
    J Phys Condens Matter; 2012 Jun; 24(24):245602. PubMed ID: 22627115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single GaAs Nanowire/Graphene Hybrid Devices Fabricated by a Position-Controlled Microtransfer and an Imprinting Technique for an Embedded Structure.
    Mukherjee A; Yun H; Shin DH; Nam J; Munshi AM; Dheeraj DL; Fimland BO; Weman H; Kim KS; Lee SW; Kim DC
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13514-13522. PubMed ID: 30892012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric contacts on a single SnO₂ nanowire device: an investigation using an equivalent circuit model.
    Huh J; Na J; Ha JS; Kim S; Kim GT
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3097-102. PubMed ID: 21774484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale contacts between carbon nanotubes and metallic pads.
    Peng N; Li H; Zhang Q
    ACS Nano; 2009 Dec; 3(12):4117-21. PubMed ID: 19894695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.
    Jia C; Ma B; Xin N; Guo X
    Acc Chem Res; 2015 Sep; 48(9):2565-75. PubMed ID: 26190024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy harvesting efficiency in GaN nanowire-based nanogenerators: the critical influence of the Schottky nanocontact.
    Jamond N; Chrétien P; Gatilova L; Galopin E; Travers L; Harmand JC; Glas F; Houzé F; Gogneau N
    Nanoscale; 2017 Mar; 9(13):4610-4619. PubMed ID: 28323294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical conductivity studies on individual conjugated polymer nanowires: two-probe and four-probe results.
    Long Y; Duvail J; Li M; Gu C; Liu Z; Ringer SP
    Nanoscale Res Lett; 2009 Nov; 5(1):237-42. PubMed ID: 20652139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectrophoretic placement of quasi-zero-, one-, and two-dimensional nanomaterials into nanogap for electrical characterizations.
    Lin YF; Chiu SC; Wang ST; Fu SK; Chen CH; Xie WJ; Yang SH; Hsu CS; Chen JF; Zhou X; Liu Z; Fang J; Jian WB
    Electrophoresis; 2012 Aug; 33(16):2475-81. PubMed ID: 22899254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and electrical properties of ultrafine Ga2O3 nanowires.
    Huang Y; Yue S; Wang Z; Wang Q; Shi C; Xu Z; Bai XD; Tang C; Gu C
    J Phys Chem B; 2006 Jan; 110(2):796-800. PubMed ID: 16471605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutually synchronized bottom-up multi-nanocontact spin-torque oscillators.
    Sani S; Persson J; Mohseni SM; Pogoryelov Y; Muduli PK; Eklund A; Malm G; Käll M; Dmitriev A; Åkerman J
    Nat Commun; 2013; 4():2731. PubMed ID: 24201826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stencil nano lithography based on a nanoscale polymer shadow mask: towards organic nanoelectronics.
    Yun H; Kim S; Kim H; Lee J; McAllister K; Kim J; Pyo S; Sung Kim J; Campbell EE; Hyoung Lee W; Wook Lee S
    Sci Rep; 2015 May; 5():10220. PubMed ID: 25959389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between the performance and microstructure of Ti/Al/Ti/Au Ohmic contacts to p-type silicon nanowires.
    Motayed A; Bonevich JE; Krylyuk S; Davydov AV; Aluri G; Rao MV
    Nanotechnology; 2011 Feb; 22(7):075206. PubMed ID: 21233538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact-independent measurement of electrical conductance of a thin film with a nanoscale sensor.
    Mentzel TS; Maclean K; Kastner MA
    Nano Lett; 2011 Oct; 11(10):4102-6. PubMed ID: 21899339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct integration of metal oxide nanowires into an effective gas sensing device.
    Vomiero A; Ponzoni A; Comini E; Ferroni M; Faglia G; Sberveglieri G
    Nanotechnology; 2010 Apr; 21(14):145502. PubMed ID: 20220218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.