These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 26260855)
1. A comment on two-locus epistatic interaction models for genome-wide association studies. Sohn KA; Wee K J Bioinform Comput Biol; 2015 Dec; 13(6):1571004. PubMed ID: 26260855 [TBL] [Abstract][Full Text] [Related]
2. Predictive rule inference for epistatic interaction detection in genome-wide association studies. Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365 [TBL] [Abstract][Full Text] [Related]
3. Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models. Russ D; Williams JA; Cardoso VR; Bravo-Merodio L; Pendleton SC; Aziz F; Acharjee A; Gkoutos GV PLoS One; 2022; 17(2):e0263390. PubMed ID: 35180244 [TBL] [Abstract][Full Text] [Related]
4. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure. Leem S; Jeong HH; Lee J; Wee K; Sohn KA Comput Biol Chem; 2014 Jun; 50():19-28. PubMed ID: 24581733 [TBL] [Abstract][Full Text] [Related]
5. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering. Guo X; Meng Y; Yu N; Pan Y BMC Bioinformatics; 2014 Apr; 15():102. PubMed ID: 24717145 [TBL] [Abstract][Full Text] [Related]
6. Ant colony optimization with an automatic adjustment mechanism for detecting epistatic interactions. Guan B; Zhao Y; Sun W Comput Biol Chem; 2018 Dec; 77():354-362. PubMed ID: 30466044 [TBL] [Abstract][Full Text] [Related]
7. A whole-genome simulator capable of modeling high-order epistasis for complex disease. Yang W; Gu CC Genet Epidemiol; 2013 Nov; 37(7):686-94. PubMed ID: 24114848 [TBL] [Abstract][Full Text] [Related]
8. Genetic studies of complex human diseases: characterizing SNP-disease associations using Bayesian networks. Han B; Chen XW; Talebizadeh Z; Xu H BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S14. PubMed ID: 23281790 [TBL] [Abstract][Full Text] [Related]
9. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS. Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779 [TBL] [Abstract][Full Text] [Related]
10. Nature-Inspired Multiobjective Epistasis Elucidation from Genome-Wide Association Studies. Li X; Zhang S; Wong KC IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):226-237. PubMed ID: 29994485 [TBL] [Abstract][Full Text] [Related]
11. A mixed two-stage method for detecting interactions in genomewide association studies. Zuo Y; Kang G J Theor Biol; 2010 Feb; 262(4):576-83. PubMed ID: 19896954 [TBL] [Abstract][Full Text] [Related]
12. Epi2Loc: an R package to investigate two-locus epistatic models. Walters RK; Laurin C; Lubke GH Twin Res Hum Genet; 2014 Aug; 17(4):272-8. PubMed ID: 24983251 [TBL] [Abstract][Full Text] [Related]
13. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies. Yang C; He Z; Wan X; Yang Q; Xue H; Yu W Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029 [TBL] [Abstract][Full Text] [Related]
14. Prioritizing tests of epistasis through hierarchical representation of genomic redundancies. Cowman T; Koyutürk M Nucleic Acids Res; 2017 Aug; 45(14):e131. PubMed ID: 28605458 [TBL] [Abstract][Full Text] [Related]
15. CMDR based differential evolution identifies the epistatic interaction in genome-wide association studies. Yang CH; Chuang LY; Lin YD Bioinformatics; 2017 Aug; 33(15):2354-2362. PubMed ID: 28379338 [TBL] [Abstract][Full Text] [Related]
16. IndOR: a new statistical procedure to test for SNP-SNP epistasis in genome-wide association studies. Emily M Stat Med; 2012 Sep; 31(21):2359-73. PubMed ID: 22711278 [TBL] [Abstract][Full Text] [Related]
17. GEP-EpiSeeker: a gene expression programming-based method for epistatic interaction detection in genome-wide association studies. Peng YZ; Lin Y; Huang Y; Li Y; Luo G; Liao J BMC Genomics; 2021 Dec; 22(Suppl 1):910. PubMed ID: 34930147 [TBL] [Abstract][Full Text] [Related]
18. KNN-MDR: a learning approach for improving interactions mapping performances in genome wide association studies. Abo Alchamlat S; Farnir F BMC Bioinformatics; 2017 Mar; 18(1):184. PubMed ID: 28327091 [TBL] [Abstract][Full Text] [Related]
19. FHSA-SED: Two-Locus Model Detection for Genome-Wide Association Study with Harmony Search Algorithm. Tuo S; Zhang J; Yuan X; Zhang Y; Liu Z PLoS One; 2016; 11(3):e0150669. PubMed ID: 27014873 [TBL] [Abstract][Full Text] [Related]
20. Detecting epistatic effects in association studies at a genomic level based on an ensemble approach. Li J; Horstman B; Chen Y Bioinformatics; 2011 Jul; 27(13):i222-9. PubMed ID: 21685074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]