These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26261011)

  • 1. A molecular dynamics test of the Hertz-Knudsen equation for evaporating liquids.
    Hołyst R; Litniewski M; Jakubczyk D
    Soft Matter; 2015 Sep; 11(36):7201-6. PubMed ID: 26261011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaporation into vacuum: Mass flux from momentum flux and the Hertz-Knudsen relation revisited.
    Hołyst R; Litniewski M
    J Chem Phys; 2009 Feb; 130(7):074707. PubMed ID: 19239309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation.
    Zhakhovsky VV; Kryukov AP; Levashov VY; Shishkova IN; Anisimov SI
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18209-18217. PubMed ID: 29666235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaporation of liquid droplets of nano- and micro-meter size as a function of molecular mass and intermolecular interactions: experiments and molecular dynamics simulations.
    Hołyst R; Litniewski M; Jakubczyk D
    Soft Matter; 2017 Sep; 13(35):5858-5864. PubMed ID: 28785757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expressions for the Evaporation and Condensation Coefficients in the Hertz-Knudsen Relation.
    Persad AH; Ward CA
    Chem Rev; 2016 Jul; 116(14):7727-67. PubMed ID: 27314250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximum evaporating flux of molecular fluids from a planar liquid surface.
    Bird E; Liang Z
    Phys Rev E; 2020 Oct; 102(4-1):043102. PubMed ID: 33212695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport phenomena in the Knudsen layer near an evaporating surface.
    Bird E; Liang Z
    Phys Rev E; 2019 Oct; 100(4-1):043108. PubMed ID: 31770887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonequilibrium kinetic boundary condition at the vapor-liquid interface of argon.
    Ishiyama T; Fujikawa S; Kurz T; Lauterborn W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042406. PubMed ID: 24229188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaporation of Lennard-Jones fluids.
    Cheng S; Lechman JB; Plimpton SJ; Grest GS
    J Chem Phys; 2011 Jun; 134(22):224704. PubMed ID: 21682530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multirelaxation-time lattice Boltzmann model for droplet heating and evaporation under forced convection.
    Albernaz D; Do-Quang M; Amberg G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043012. PubMed ID: 25974585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Traction and nonequilibrium phase behavior of confined sheared liquids at high pressure.
    Gattinoni C; Heyes DM; Lorenz CD; Dini D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052406. PubMed ID: 24329278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaporation of Liquid Droplet in Nano and Micro Scales from Statistical Rate Theory.
    Duan F; He B; Wei T
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3011-6. PubMed ID: 26353528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-Field Simulation of Liquid-Vapor Equilibrium and Evaporation of Fluid Mixtures.
    Ronsin OJJ; Jang D; Egelhaaf HJ; Brabec CJ; Harting J
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):55988-56003. PubMed ID: 34792348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat transfer at the nanoscale: evaporation of nanodroplets.
    Hołyst R; Litniewski M
    Phys Rev Lett; 2008 Feb; 100(5):055701. PubMed ID: 18352389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Verification of Onsager's reciprocal relations for evaporation and condensation using non-equilibrium molecular dynamics.
    Xu J; Kjelstrup S; Bedeaux D; Røsjorde A; Rekvig L
    J Colloid Interface Sci; 2006 Jul; 299(1):452-63. PubMed ID: 16481001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaporation rates and vapor pressures of the even-numbered C8-C18 monocarboxylic acids.
    Cappa CD; Lovejoy ER; Ravishankara AR
    J Phys Chem A; 2008 May; 112(17):3959-64. PubMed ID: 18348549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ballistic Evaporation and Solvation of Helium Atoms at the Surfaces of Protic and Hydrocarbon Liquids.
    Johnson AM; Lancaster DK; Faust JA; Hahn C; Reznickova A; Nathanson GM
    J Phys Chem Lett; 2014 Nov; 5(21):3914-8. PubMed ID: 26278769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations.
    Hołyst R; Litniewski M; Jakubczyk D; Kolwas K; Kolwas M; Kowalski K; Migacz S; Palesa S; Zientara M
    Rep Prog Phys; 2013 Mar; 76(3):034601. PubMed ID: 23439452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic boundary condition at a vapor-liquid interface.
    Ishiyama T; Yano T; Fujikawa S
    Phys Rev Lett; 2005 Aug; 95(8):084504. PubMed ID: 16196864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaporation and propagation of liquid drop streams at vacuum pressures: Experiments and modeling.
    Guildenbecher DR; Barnard JJ; Grasser TW; McMaster AM; Campbell RB; Grote DP; Nandy P; Light M
    Phys Rev E; 2021 Apr; 103(4-1):043105. PubMed ID: 34005901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.