These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26261224)

  • 1. SuccFind: a novel succinylation sites online prediction tool via enhanced characteristic strategy.
    Xu HD; Shi SP; Wen PP; Qiu JD
    Bioinformatics; 2015 Dec; 31(23):3748-50. PubMed ID: 26261224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational prediction of species-specific malonylation sites via enhanced characteristic strategy.
    Wang LN; Shi SP; Xu HD; Wen PP; Qiu JD
    Bioinformatics; 2017 May; 33(10):1457-1463. PubMed ID: 28025199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systematic identification of species-specific protein succinylation sites using joint element features information.
    Hasan MM; Khatun MS; Mollah MNH; Yong C; Guo D
    Int J Nanomedicine; 2017; 12():6303-6315. PubMed ID: 28894368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization.
    Wen PP; Shi SP; Xu HD; Wang LN; Qiu JD
    Bioinformatics; 2016 Oct; 32(20):3107-3115. PubMed ID: 27354692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ProAcePred: prokaryote lysine acetylation sites prediction based on elastic net feature optimization.
    Chen G; Cao M; Luo K; Wang L; Wen P; Shi S
    Bioinformatics; 2018 Dec; 34(23):3999-4006. PubMed ID: 29868863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties.
    Hasan MM; Yang S; Zhou Y; Mollah MN
    Mol Biosyst; 2016 Mar; 12(3):786-95. PubMed ID: 26739209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating key position and amino acid residue features to identify general and species-specific Ubiquitin conjugation sites.
    Chen X; Qiu JD; Shi SP; Suo SB; Huang SY; Liang RP
    Bioinformatics; 2013 Jul; 29(13):1614-22. PubMed ID: 23626001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach.
    Jia J; Liu Z; Xiao X; Liu B; Chou KC
    J Theor Biol; 2016 Apr; 394():223-230. PubMed ID: 26807806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic identification of the lysine succinylation in the protozoan parasite Toxoplasma gondii.
    Li X; Hu X; Wan Y; Xie G; Li X; Chen D; Cheng Z; Yi X; Liang S; Tan F
    J Proteome Res; 2014 Dec; 13(12):6087-95. PubMed ID: 25377623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and Identification of Lysine Succinylation Sites based on Deep Learning Method.
    Huang KY; Hsu JB; Lee TY
    Sci Rep; 2019 Nov; 9(1):16175. PubMed ID: 31700141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset.
    Jia J; Liu Z; Xiao X; Liu B; Chou KC
    Anal Biochem; 2016 Mar; 497():48-56. PubMed ID: 26723495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iPTM-mLys: identifying multiple lysine PTM sites and their different types.
    Qiu WR; Sun BQ; Xiao X; Xu ZC; Chou KC
    Bioinformatics; 2016 Oct; 32(20):3116-3123. PubMed ID: 27334473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pSuc-EDBAM: Predicting lysine succinylation sites in proteins based on ensemble dense blocks and an attention module.
    Jia J; Wu G; Li M; Qiu W
    BMC Bioinformatics; 2022 Oct; 23(1):450. PubMed ID: 36316638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepSuccinylSite: a deep learning based approach for protein succinylation site prediction.
    Thapa N; Chaudhari M; McManus S; Roy K; Newman RH; Saigo H; Kc DB
    BMC Bioinformatics; 2020 Apr; 21(Suppl 3):63. PubMed ID: 32321437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global analysis of protein lysine succinylation profiles in common wheat.
    Zhang Y; Wang G; Song L; Mu P; Wang S; Liang W; Lin Q
    BMC Genomics; 2017 Apr; 18(1):309. PubMed ID: 28427325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pSuc-PseRat: Predicting Lysine Succinylation in Proteins by Exploiting the Ratios of Sequence Coupling and Properties.
    Ai H; Wu R; Zhang L; Wu X; Ma J; Hu H; Huang L; Chen W; Zhao J; Liu H
    J Comput Biol; 2017 Oct; 24(10):1050-1059. PubMed ID: 28682641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The first succinylome profile of Trichophyton rubrum reveals lysine succinylation on proteins involved in various key cellular processes.
    Xu X; Liu T; Yang J; Chen L; Liu B; Wei C; Wang L; Jin Q
    BMC Genomics; 2017 Aug; 18(1):577. PubMed ID: 28778155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features.
    Shi SP; Qiu JD; Sun XY; Suo SB; Huang SY; Liang RP
    Mol Biosyst; 2012 Apr; 8(5):1520-7. PubMed ID: 22402705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First succinyl-proteome profiling of extensively drug-resistant Mycobacterium tuberculosis revealed involvement of succinylation in cellular physiology.
    Xie L; Liu W; Li Q; Chen S; Xu M; Huang Q; Zeng J; Zhou M; Xie J
    J Proteome Res; 2015 Jan; 14(1):107-19. PubMed ID: 25363132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.