These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 26261344)

  • 1. Elasticity, friction, and pathway of γ-subunit rotation in FoF1-ATP synthase.
    Okazaki K; Hummer G
    Proc Natl Acad Sci U S A; 2015 Aug; 112(34):10720-5. PubMed ID: 26261344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Torque, chemistry and efficiency in molecular motors: a study of the rotary-chemical coupling in F1-ATPase.
    Mukherjee S; Bora RP; Warshel A
    Q Rev Biophys; 2015 Nov; 48(4):395-403. PubMed ID: 26537397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rotary molecular motor that can work at near 100% efficiency.
    Kinosita K; Yasuda R; Noji H; Adachi K
    Philos Trans R Soc Lond B Biol Sci; 2000 Apr; 355(1396):473-89. PubMed ID: 10836501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotation of F1-ATPase: how an ATP-driven molecular machine may work.
    Kinosita K; Adachi K; Itoh H
    Annu Rev Biophys Biomol Struct; 2004; 33():245-68. PubMed ID: 15139813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-driven stepwise rotation of FoF1-ATP synthase.
    Ueno H; Suzuki T; Kinosita K; Yoshida M
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1333-8. PubMed ID: 15668386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotation of artificial rotor axles in rotary molecular motors.
    Baba M; Iwamoto K; Iino R; Ueno H; Hara M; Nakanishi A; Kishikawa JI; Noji H; Yokoyama K
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):11214-11219. PubMed ID: 27647891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase.
    Aksimentiev A; Balabin IA; Fillingame RH; Schulten K
    Biophys J; 2004 Mar; 86(3):1332-44. PubMed ID: 14990464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single molecule energetics of F1-ATPase motor.
    Muneyuki E; Watanabe-Nakayama T; Suzuki T; Yoshida M; Nishizaka T; Noji H
    Biophys J; 2007 Mar; 92(5):1806-12. PubMed ID: 17158579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Torsional elasticity and energetics of F1-ATPase.
    Czub J; Grubmüller H
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7408-13. PubMed ID: 21502534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. F
    Kubo S; Niina T; Takada S
    Biophys J; 2023 Jul; 122(14):2898-2909. PubMed ID: 36171725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase.
    Böckmann RA; Grubmüller H
    Nat Struct Biol; 2002 Mar; 9(3):198-202. PubMed ID: 11836535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetry in the F1-ATPase and its implications for the rotational cycle.
    Sun SX; Wang H; Oster G
    Biophys J; 2004 Mar; 86(3):1373-84. PubMed ID: 14990467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotation triggers nucleotide-independent conformational transition of the empty β subunit of F₁-ATPase.
    Czub J; Grubmüller H
    J Am Chem Soc; 2014 May; 136(19):6960-8. PubMed ID: 24798048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy transduction in the F1 motor of ATP synthase.
    Wang H; Oster G
    Nature; 1998 Nov; 396(6708):279-82. PubMed ID: 9834036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate release coupled to rotary motion of F1-ATPase.
    Okazaki K; Hummer G
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16468-73. PubMed ID: 24062450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Irregular activity oscillations of rotary molecular motor. A simple kinetic model of F1-ATPase].
    Gol'dshteĭn BN; Aksirov AM; Zakrzhevskaia DT
    Mol Biol (Mosk); 2012; 46(5):792-8. PubMed ID: 23156679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple mechanism whereby the F1-ATPase motor rotates with near-perfect chemomechanical energy conversion.
    Saita E; Suzuki T; Kinosita K; Yoshida M
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9626-31. PubMed ID: 26195785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting the role of the γ-subunit in the rotary-chemical coupling and torque generation of F1-ATPase.
    Mukherjee S; Warshel A
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2746-51. PubMed ID: 25730883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How subunit coupling produces the gamma-subunit rotary motion in F1-ATPase.
    Pu J; Karplus M
    Proc Natl Acad Sci U S A; 2008 Jan; 105(4):1192-7. PubMed ID: 18216260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance.
    Pandini A; Kleinjung J; Taylor WR; Junge W; Khan S
    Biophys J; 2015 Sep; 109(5):975-87. PubMed ID: 26331255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.