BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 26261566)

  • 21. Subretinal delivery of AAV2-mediated human erythropoietin gene is protective and safe in experimental diabetic retinopathy.
    Xu H; Zhang L; Gu L; Lu L; Gao G; Li W; Xu G; Wang J; Gao F; Xu JY; Yao J; Wang F; Zhang J; Xu GT
    Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1519-30. PubMed ID: 24508793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The emerging roles of clusterin on reduction of both blood retina barrier breakdown and neural retina damage in diabetic retinopathy.
    Zhang C; Nie J; Feng L; Luo W; Yao J; Wang F; Wang H
    Discov Med; 2016 Apr; 21(116):227-37. PubMed ID: 27232509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hypertension increases retinal inflammation in experimental diabetes: a possible mechanism for aggravation of diabetic retinopathy by hypertension.
    Silva KC; Pinto CC; Biswas SK; de Faria JB; de Faria JM
    Curr Eye Res; 2007 Jun; 32(6):533-41. PubMed ID: 17612969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LncRNA HOTTIP improves diabetic retinopathy by regulating the p38-MAPK pathway.
    Sun Y; Liu YX
    Eur Rev Med Pharmacol Sci; 2018 May; 22(10):2941-2948. PubMed ID: 29863235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diabetes: a potential enhancer of retinal injury in rat retinas.
    Oshitari T; Roy S
    Neurosci Lett; 2005 Dec; 390(1):25-30. PubMed ID: 16154273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nuclear PKR in retinal neurons in the early stage of diabetic retinopathy in streptozotocin‑induced diabetic rats.
    Silva VAO; André ND; Sousa TAE; Alves VM; Kettelhut IDC; De Lucca FL
    Mol Med Rep; 2021 Aug; 24(2):. PubMed ID: 34184090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-mobility group box-1 and its receptors contribute to proinflammatory response in the acute phase of spinal cord injury in rats.
    Chen KB; Uchida K; Nakajima H; Yayama T; Hirai T; Rodriguez Guerrero A; Kobayashi S; Ma WY; Liu SY; Zhu P; Baba H
    Spine (Phila Pa 1976); 2011 Dec; 36(25):2122-9. PubMed ID: 21343866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of the receptor for advanced glycation endproducts (RAGE) in retinal vasodegenerative pathology during diabetes in mice.
    McVicar CM; Ward M; Colhoun LM; Guduric-Fuchs J; Bierhaus A; Fleming T; Schlotterer A; Kolibabka M; Hammes HP; Chen M; Stitt AW
    Diabetologia; 2015 May; 58(5):1129-37. PubMed ID: 25687235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Restoration of endogenous substance P is associated with inhibition of apoptosis of retinal cells in diabetic rats.
    Yang JH; Guo Z; Zhang T; Meng XX; Xie LS
    Regul Pept; 2013 Nov; 187():12-6. PubMed ID: 24045094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Receptor for advanced glycation end product expression in experimental diabetic retinopathy.
    Wang Y; Vom Hagen F; Pfister F; Bierhaus A; Feng Y; Gans R; Hammes HP
    Ann N Y Acad Sci; 2008 Apr; 1126():42-5. PubMed ID: 18448794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intravitreal injection of exendin-4 analogue protects retinal cells in early diabetic rats.
    Zhang Y; Zhang J; Wang Q; Lei X; Chu Q; Xu GT; Ye W
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):278-85. PubMed ID: 20688733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-mobility group Box-1 is involved in NMDA-induced retinal injury the in rat retina.
    Sakamoto K; Mizuta A; Fujimura K; Kurauchi Y; Mori A; Nakahara T; Ishii K
    Exp Eye Res; 2015 Aug; 137():63-70. PubMed ID: 26079740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of uric acid in the pathogenesis of diabetic retinopathy based on Notch pathway.
    Zhu DD; Wang YZ; Zou C; She XP; Zheng Z
    Biochem Biophys Res Commun; 2018 Sep; 503(2):921-929. PubMed ID: 29932924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of Netrin-1 in diabetic rat retina.
    Zhang X; Liu J; Xiong S; Xia X; Xu H
    Eye Sci; 2013 Sep; 28(3):148-52. PubMed ID: 24579557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. P66Shc expression in diabetic rat retina.
    Zhao MH; Hu J; Li S; Wu Q; Lu P
    BMC Ophthalmol; 2018 Feb; 18(1):58. PubMed ID: 29482510
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellular mechanisms of high mobility group 1 (HMGB-1) protein action in the diabetic retinopathy.
    Santos AR; Dvoriantchikova G; Li Y; Mohammad G; Abu El-Asrar AM; Wen R; Ivanov D
    PLoS One; 2014; 9(1):e87574. PubMed ID: 24498140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase.
    Tawfik A; Sanders T; Kahook K; Akeel S; Elmarakby A; Al-Shabrawey M
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):878-84. PubMed ID: 18806296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High mobility group box protein-1 in experimental autoimmune uveoretinitis.
    Watanabe T; Keino H; Sato Y; Kudo A; Kawakami H; Okada AA
    Invest Ophthalmol Vis Sci; 2009 May; 50(5):2283-90. PubMed ID: 19151394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy.
    Yang LP; Sun HL; Wu LM; Guo XJ; Dou HL; Tso MO; Zhao L; Li SM
    Invest Ophthalmol Vis Sci; 2009 May; 50(5):2319-27. PubMed ID: 19011009
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MiR-204 inhibits inflammation and cell apoptosis in retinopathy rats with diabetic retinopathy by regulating Bcl-2 and SIRT1 expressions.
    Qi F; Jiang X; Tong T; Chang H; Li RX
    Eur Rev Med Pharmacol Sci; 2020 Jun; 24(12):6486-6493. PubMed ID: 32633335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.