These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26261966)

  • 1. Role of Spin-Triplet Polycyclic Aromatic Hydrocarbons in Soot Surface Growth.
    Zhang HB; You X; Law CK
    J Phys Chem Lett; 2015 Feb; 6(3):477-81. PubMed ID: 26261966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Carbon-Addition and Hydrogen-Migration Reactions in Soot Surface Growth.
    Zhang HB; Hou D; Law CK; You X
    J Phys Chem A; 2016 Feb; 120(5):683-9. PubMed ID: 26799641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation mechanism of polycyclic aromatic hydrocarbons beyond the second aromatic ring.
    Kislov VV; Sadovnikov AI; Mebel AM
    J Phys Chem A; 2013 Jun; 117(23):4794-816. PubMed ID: 23672431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PAH growth initiated by propargyl addition: mechanism development and computational kinetics.
    Raj A; Al Rashidi MJ; Chung SH; Sarathy SM
    J Phys Chem A; 2014 Apr; 118(16):2865-85. PubMed ID: 24650362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical study on the effect of C
    Ruan S; Shi Y; Qin C; Xu K; He C; Zhang L
    Phys Chem Chem Phys; 2023 Jun; 25(24):16550-16558. PubMed ID: 37309216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polycyclic aromatic hydrocarbon formation mechanism in the "particle phase". A theoretical study.
    Indarto A; Giordana A; Ghigo G; Maranzana A; Tonachini G
    Phys Chem Chem Phys; 2010 Aug; 12(32):9429-40. PubMed ID: 20589277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene.
    Comandini A; Malewicki T; Brezinsky K
    J Phys Chem A; 2012 Mar; 116(10):2409-34. PubMed ID: 22339468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly efficient growth mechanism of polycyclic aromatic hydrocarbons.
    Shukla B; Koshi M
    Phys Chem Chem Phys; 2010 Mar; 12(10):2427-37. PubMed ID: 20449356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unexpected chemistry from the reaction of naphthyl and acetylene at combustion-like temperatures.
    Parker DS; Kaiser RI; Bandyopadhyay B; Kostko O; Troy TP; Ahmed M
    Angew Chem Int Ed Engl; 2015 Apr; 54(18):5421-4. PubMed ID: 25752687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen-Abstraction/Acetylene-Addition Exposed.
    Yang T; Troy TP; Xu B; Kostko O; Ahmed M; Mebel AM; Kaiser RI
    Angew Chem Int Ed Engl; 2016 Nov; 55(48):14983-14987. PubMed ID: 27781351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction kinetics of hydrogen abstraction from polycyclic aromatic hydrocarbons by H atoms.
    Hou D; You X
    Phys Chem Chem Phys; 2017 Nov; 19(45):30772-30780. PubMed ID: 29134219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimerization of polycyclic aromatic hydrocarbons in soot nucleation.
    Zhang HB; You X; Wang H; Law CK
    J Phys Chem A; 2014 Feb; 118(8):1287-92. PubMed ID: 24491159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the effect of nickel clusters on the formation of incipient soot particles from polycyclic aromatic hydrocarbons via ReaxFF molecular dynamics simulations.
    Shabnam S; Mao Q; van Duin ACT; Luo KH
    Phys Chem Chem Phys; 2019 May; 21(19):9865-9875. PubMed ID: 31033994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen abstraction/acetylene addition revealed.
    Parker DS; Kaiser RI; Troy TP; Ahmed M
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7740-4. PubMed ID: 24953850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of phenyl radicals in the growth of polycyclic aromatic hydrocarbons.
    Shukla B; Susa A; Miyoshi A; Koshi M
    J Phys Chem A; 2008 Mar; 112(11):2362-9. PubMed ID: 18298104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DFT functional benchmarking on the energy splitting of chromium spin states and mechanistic study of acetylene cyclotrimerization over the Phillips Cr(II)/silica catalyst.
    Liu Z; Cheng R; He X; Wu X; Liu B
    J Phys Chem A; 2012 Jul; 116(28):7538-49. PubMed ID: 22697502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation of an Embedded Five-Membered Ring in Polycyclic Aromatic Hydrocarbons via the Hydrogen-Abstraction-Acetylene-Addition Mechanism: A Theoretical Study.
    Semenikhin AS; Savchenkova AS; Chechet IV; Matveev SG; Frenklach M; Mebel AM
    J Phys Chem A; 2021 Apr; 125(16):3341-3354. PubMed ID: 33876944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing the solid soot particulates formed in a fuel-rich flame by solvent-free matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.
    Zhang W; Shao C; Sarathy SM
    Rapid Commun Mass Spectrom; 2020 Feb; 34(4):e8596. PubMed ID: 31756786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized combustion of biomass volatiles by varying O2 and CO2 levels: a numerical simulation using a highly detailed soot formation reaction mechanism.
    Wijayanta AT; Saiful Alam M; Nakaso K; Fukai J; Shimizu M
    Bioresour Technol; 2012 Apr; 110():645-51. PubMed ID: 22334001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study for the reaction of CH(3)CN with O((3)P).
    Sun J; Tang Y; Jia X; Wang F; Sun H; Feng J; Pan X; Hao L; Wang R
    J Chem Phys; 2010 Feb; 132(6):064301. PubMed ID: 20151737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.