BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26261976)

  • 1. The Theoretical Estimation of the Bioluminescent Efficiency of the Firefly via a Nonadiabatic Molecular Dynamics Simulation.
    Yue L; Lan Z; Liu YJ
    J Phys Chem Lett; 2015 Feb; 6(3):540-8. PubMed ID: 26261976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic insight into the chemiluminescent decomposition of firefly dioxetanone.
    Yue L; Liu YJ; Fang WH
    J Am Chem Soc; 2012 Jul; 134(28):11632-9. PubMed ID: 22720977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient firefly chemi/bioluminescence: evidence for chemiexcitation resulting from the decomposition of a neutral firefly dioxetanone molecule.
    Pinto da Silva L; Santos AJ; Esteves da Silva JC
    J Phys Chem A; 2013 Jan; 117(1):94-100. PubMed ID: 23244350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A QM/MM Study on the Initiation Reaction of Firefly Bioluminescence-Enzymatic Oxidation of Luciferin.
    Yu M; Liu Y
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong electron correlation in the decomposition reaction of dioxetanone with implications for firefly bioluminescence.
    Greenman L; Mazziotti DA
    J Chem Phys; 2010 Oct; 133(16):164110. PubMed ID: 21033778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic insight into marine bioluminescence: photochemistry of the chemiexcited Cypridina (sea firefly) lumophore.
    Ding BW; Naumov P; Liu YJ
    J Chem Theory Comput; 2015 Feb; 11(2):591-9. PubMed ID: 26580916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are the bio- and chemiluminescence states of the firefly oxyluciferin the same as the fluorescence state?
    Navizet I; Roca-Sanjuán D; Yue L; Liu YJ; Ferré N; Lindh R
    Photochem Photobiol; 2013; 89(2):319-25. PubMed ID: 23057607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the multi-configurational character of the firefly dioxetanone anion and its prototypes in the biradical region using full valence active spaces.
    Ma Y
    Phys Chem Chem Phys; 2020 Mar; 22(9):4957-4966. PubMed ID: 32073078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic Catalysis Induced by Luciferases in the Decomposition of the Firefly Dioxetanone and Its Analogue.
    Zhou JG; Yang S; Deng ZY
    J Phys Chem B; 2017 Dec; 121(49):11053-11061. PubMed ID: 29168632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of efficient firefly bioluminescence via adiabatic transition state and seam of sloped conical intersection.
    Chung LW; Hayashi S; Lundberg M; Nakatsu T; Kato H; Morokuma K
    J Am Chem Soc; 2008 Oct; 130(39):12880-1. PubMed ID: 18767834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balancing single- and multi-reference correlation in the chemiluminescent reaction of dioxetanone using the anti-Hermitian contracted Schrödinger equation.
    Greenman L; Mazziotti DA
    J Chem Phys; 2011 May; 134(17):174110. PubMed ID: 21548676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic Insight into Cypridina Bioluminescence with a Combined Experimental and Theoretical Chemiluminescent Approach.
    Pinto da Silva L; Pereira RFJ; Magalhães CM; Esteves da Silva JCG
    J Phys Chem B; 2017 Aug; 121(33):7862-7871. PubMed ID: 28749684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the pH dependent behavior of the firefly bioluminescence: protein dynamics and water content in the active pocket.
    Kim HW; Rhee YM
    J Phys Chem B; 2013 Jun; 117(24):7260-9. PubMed ID: 23758315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemiluminescence efficiency of catalyzed 1,2-dioxetanone decomposition determined by steric effects.
    Bartoloni FH; de Oliveira MA; Ciscato LF; Augusto FA; Bastos EL; Baader WJ
    J Org Chem; 2015 Apr; 80(8):3745-51. PubMed ID: 25831218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretically obtained insight into the mechanism and dioxetanone species responsible for the singlet chemiexcitation of Coelenterazine.
    Min CG; Ferreira PJO; Pinto da Silva L
    J Photochem Photobiol B; 2017 Sep; 174():18-26. PubMed ID: 28750319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioluminescence of Firefly Squid via Mechanism of Single Electron-Transfer Oxygenation and Charge-Transfer-Induced Luminescence.
    Ding BW; Liu YJ
    J Am Chem Soc; 2017 Jan; 139(3):1106-1119. PubMed ID: 28032762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of the amazing firefly bioluminescence: the formation and structures of the light emitters.
    Orlova G; Goddard JD; Brovko LY
    J Am Chem Soc; 2003 Jun; 125(23):6962-71. PubMed ID: 12783549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemiexcitation induced proton transfer: enolate oxyluciferin as the firefly bioluminophore.
    Pinto da Silva L; Esteves da Silva JC
    J Phys Chem B; 2015 Feb; 119(6):2140-8. PubMed ID: 24927496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic Insight into the Chemiluminescent Decomposition of
    Min CG; Liu QB; Leng Y; Magalhães CM; Huang SJ; Liu CX; Yang XK; da Silva LP
    J Chem Inf Model; 2019 Oct; 59(10):4393-4401. PubMed ID: 31585031
    [No Abstract]   [Full Text] [Related]  

  • 20. Experimental Support for a Single Electron-Transfer Oxidation Mechanism in Firefly Bioluminescence.
    Branchini BR; Behney CE; Southworth TL; Fontaine DM; Gulick AM; Vinyard DJ; Brudvig GW
    J Am Chem Soc; 2015 Jun; 137(24):7592-5. PubMed ID: 26057379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.