These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26262325)

  • 21. Intraoperative acquisition of three-dimensional imaging for frameless stereotactic guidance during transsphenoidal pituitary surgery using the Arcadis Orbic System.
    Fox WC; Wawrzyniak S; Chandler WF
    J Neurosurg; 2008 Apr; 108(4):746-50. PubMed ID: 18377254
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurosurgical robotic arm drilling navigation system.
    Lin CC; Lin HC; Lee WY; Lee ST; Wu CT
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27910205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel three-dimensional-printed paranasal sinus-skull base anatomical model.
    Zhang XD; Li ZH; Wu ZS; Lin W; Lin WJ; Lin JC; Zhuang LM
    Eur Arch Otorhinolaryngol; 2018 Aug; 275(8):2045-2049. PubMed ID: 29959564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DTI-based virtual reality system for neurosurgery.
    Lo CY; Chao YP; Chou KH; Guo WY; Su JL; Lin CP
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1326-9. PubMed ID: 18002208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vibrotactile guidance for trajectory following in computer aided surgery.
    Bluteau J; Dubois MD; Coquillart S; Gentaz E; Payan Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2085-8. PubMed ID: 21095949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noninvasive Registration Strategies and Advanced Image Guidance Technology for Submillimeter Surgical Navigation Accuracy in the Lateral Skull Base.
    Schneider D; Hermann J; Gerber KA; Ansó J; Caversaccio MD; Weber S; Anschuetz L
    Otol Neurotol; 2018 Dec; 39(10):1326-1335. PubMed ID: 30239434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computer-assisted virtual autopsy using surgical navigation techniques.
    Ebert LC; Ruder TD; Martinez RM; Flach PM; Schweitzer W; Thali MJ; Ampanozi G
    AJR Am J Roentgenol; 2015 Jan; 204(1):W58-62. PubMed ID: 25539276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D-printed models and virtual reality as new tools for image-guided robot-assisted nephron-sparing surgery: a systematic review of the newest evidences.
    Checcucci E; De Cillis S; Porpiglia F
    Curr Opin Urol; 2020 Jan; 30(1):55-64. PubMed ID: 31725000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High Resolution Three-Dimensional MR Imaging of the Skull Base: Compartments, Boundaries, and Critical Structures.
    Blitz AM; Aygun N; Herzka DA; Ishii M; Gallia GL
    Radiol Clin North Am; 2017 Jan; 55(1):17-30. PubMed ID: 27890185
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-Dimensional Printed Model for Surgical Simulation of Combined Transpetrosal Approach.
    Kondo K; Nemoto M; Harada N; Masuda H; Ando S; Kubota S; Sugo N
    World Neurosurg; 2019 Jul; 127():e609-e616. PubMed ID: 30930318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull.
    Swennen GR; Barth EL; Eulzer C; Schutyser F
    Int J Oral Maxillofac Surg; 2007 Feb; 36(2):146-52. PubMed ID: 17208409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of bone anchoring device in electromagnetic computer-assisted navigation in lateral skull base surgery.
    Bernardeschi D; Nguyen Y; Villepelet A; Ferrary E; Mazalaigue S; Kalamarides M; Sterkers O
    Acta Otolaryngol; 2013 Oct; 133(10):1047-52. PubMed ID: 23941593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of Life-Size Patient-Specific 3D-Printed Dural Venous Models for Preoperative Planning.
    Govsa F; Karakas AB; Ozer MA; Eraslan C
    World Neurosurg; 2018 Feb; 110():e141-e149. PubMed ID: 29101075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery.
    Kurenov SN; Ionita C; Sammons D; Demmy TL
    J Thorac Cardiovasc Surg; 2015 Apr; 149(4):973-9.e1. PubMed ID: 25659851
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of a 3D printed hollow aortic model to assist EVAR planning in a case with complex neck anatomy: potential of 3D printing to improve patient outcome.
    Tam MD; Latham T; Brown JR; Jakeways M
    J Endovasc Ther; 2014 Oct; 21(5):760-2. PubMed ID: 25290807
    [No Abstract]   [Full Text] [Related]  

  • 36. Shortening the learning curve in endoscopic endonasal skull base surgery: a reproducible polymer tumor model for the trans-sphenoidal trans-tubercular approach to retro-infundibular tumors.
    Berhouma M; Baidya NB; Ismaïl AA; Zhang J; Ammirati M
    Clin Neurol Neurosurg; 2013 Sep; 115(9):1635-41. PubMed ID: 23465616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New Navigation Approaches for Endoscopic Lateral Skull Base Surgery.
    Barber SR
    Otolaryngol Clin North Am; 2021 Feb; 54(1):175-187. PubMed ID: 33243374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection.
    Wong KC; Kumta SM; Geel NV; Demol J
    Comput Aided Surg; 2015; 20(1):14-23. PubMed ID: 26290317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New Directions in 3D Medical Modeling: 3D-Printing Anatomy and Functions in Neurosurgical Planning.
    Gargiulo P; Árnadóttir Í; Gíslason M; Edmunds K; Ólafsson I
    J Healthc Eng; 2017; 2017():1439643. PubMed ID: 29065569
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of Three-Dimensional Printed Craniocerebral Models for Simulated Neurosurgery.
    Lan Q; Chen A; Zhang T; Li G; Zhu Q; Fan X; Ma C; Xu T
    World Neurosurg; 2016 Jul; 91():434-42. PubMed ID: 27132180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.