BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 26262344)

  • 1. An Optimized Superpixel Clustering Approach for High-Resolution Chest CT Image Segmentation.
    Pinheiro da Rosa R; Cordeiro d'Ornellas M
    Stud Health Technol Inform; 2015; 216():1045. PubMed ID: 26262344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A texton-based approach for the classification of lung parenchyma in CT images.
    Gangeh MJ; Sørensen L; Shaker SB; Kamel MS; de Bruijne M; Loog M
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):595-602. PubMed ID: 20879449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the Lung Image Database Consortium and Image Database Resource Initiative dataset.
    Messay T; Hardie RC; Tuinstra TR
    Med Image Anal; 2015 May; 22(1):48-62. PubMed ID: 25791434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Many Is Better Than One: An Integration of Multiple Simple Strategies for Accurate Lung Segmentation in CT Images.
    Shi Z; Ma J; Zhao M; Liu Y; Feng Y; Zhang M; He L; Suzuki K
    Biomed Res Int; 2016; 2016():1480423. PubMed ID: 27635395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early detection of emphysema progression.
    Gorbunova V; Jacobs SS; Lo P; Dirksen A; Nielsen M; Bab-Hadiashar A; de Bruijne M
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):193-200. PubMed ID: 20879315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated segmentation of a motion mask to preserve sliding motion in deformable registration of thoracic CT.
    Vandemeulebroucke J; Bernard O; Rit S; Kybic J; Clarysse P; Sarrut D
    Med Phys; 2012 Feb; 39(2):1006-15. PubMed ID: 22320810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic segmentation of the pulmonary lobes from chest CT scans based on fissures, vessels, and bronchi.
    Lassen B; van Rikxoort EM; Schmidt M; Kerkstra S; van Ginneken B; Kuhnigk JM
    IEEE Trans Med Imaging; 2013 Feb; 32(2):210-22. PubMed ID: 23014712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.
    Xu Z; Bagci U; Foster B; Mansoor A; Udupa JK; Mollura DJ
    Med Image Anal; 2015 Aug; 24(1):1-17. PubMed ID: 26026778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans.
    Kuhnigk JM; Dicken V; Bornemann L; Bakai A; Wormanns D; Krass S; Peitgen HO
    IEEE Trans Med Imaging; 2006 Apr; 25(4):417-34. PubMed ID: 16608058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans.
    Tschirren J; Hoffman EA; McLennan G; Sonka M
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1529-39. PubMed ID: 16353370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated Image Retrieval of Chest CT Images Based on Local Grey Scale Invariant Features.
    Arrais Porto M; Cordeiro d'Ornellas M
    Stud Health Technol Inform; 2015; 216():1046. PubMed ID: 26262345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of automatic pulmonary lobe segmentation methods from CT.
    Doel T; Gavaghan DJ; Grau V
    Comput Med Imaging Graph; 2015 Mar; 40():13-29. PubMed ID: 25467805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust segmentation and anatomical labeling of the airway tree from thoracic CT scans.
    van Ginneken B; Baggerman W; van Rikxoort EM
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):219-26. PubMed ID: 18979751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An edge-region force guided active shape approach for automatic lung field detection in chest radiographs.
    Xu T; Mandal M; Long R; Cheng I; Basu A
    Comput Med Imaging Graph; 2012 Sep; 36(6):452-63. PubMed ID: 22608158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic detection of lesions in lung regions that are segmented using spatial relations.
    Hassen DB; Taleb H
    Clin Imaging; 2013; 37(3):498-503. PubMed ID: 23601768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lymph node detection and segmentation in chest CT data using discriminative learning and a spatial prior.
    Feulner J; Zhou SK; Hammon M; Hornegger J; Comaniciu D
    Med Image Anal; 2013 Feb; 17(2):254-70. PubMed ID: 23246185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locality-constrained Subcluster Representation Ensemble for lung image classification.
    Song Y; Cai W; Huang H; Zhou Y; Wang Y; Feng DD
    Med Image Anal; 2015 May; 22(1):102-13. PubMed ID: 25839422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated texture-based quantification of centrilobular nodularity and centrilobular emphysema in chest CT images.
    Ginsburg SB; Lynch DA; Bowler RP; Schroeder JD
    Acad Radiol; 2012 Oct; 19(10):1241-51. PubMed ID: 22958719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach.
    Dehmeshki J; Amin H; Valdivieso M; Ye X
    IEEE Trans Med Imaging; 2008 Apr; 27(4):467-80. PubMed ID: 18390344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improve threshold segmentation using features extraction to automatic lung delimitation.
    França C; Vasconcelos G; Diniz P; Melo P; Diniz J; Novaes M
    Stud Health Technol Inform; 2013; 192():1159. PubMed ID: 23920933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.