These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 26262472)

  • 1. Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes.
    Sun K; McDowell MT; Nielander AC; Hu S; Shaner MR; Yang F; Brunschwig BS; Lewis NS
    J Phys Chem Lett; 2015 Feb; 6(4):592-8. PubMed ID: 26262472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amorphous TiO₂ coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation.
    Hu S; Shaner MR; Beardslee JA; Lichterman M; Brunschwig BS; Lewis NS
    Science; 2014 May; 344(6187):1005-9. PubMed ID: 24876492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of structure and processing on the behavior of TiO2 protective layers for stabilization of n-Si/TiO2/Ni photoanodes for water oxidation.
    McDowell MT; Lichterman MF; Carim AI; Liu R; Hu S; Brunschwig BS; Lewis NS
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15189-99. PubMed ID: 26083827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films.
    Sun K; Saadi FH; Lichterman MF; Hale WG; Wang HP; Zhou X; Plymale NT; Omelchenko ST; He JH; Papadantonakis KM; Brunschwig BS; Lewis NS
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3612-7. PubMed ID: 25762067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Si photoanode protected by a metal modified ITO layer with ultrathin NiO(x) for solar water oxidation.
    Sun K; Shen S; Cheung JS; Pang X; Park N; Zhou J; Hu Y; Sun Z; Noh SY; Riley CT; Yu PK; Jin S; Wang D
    Phys Chem Chem Phys; 2014 Mar; 16(10):4612-25. PubMed ID: 24458088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation.
    Chen L; Yang J; Klaus S; Lee LJ; Woods-Robinson R; Ma J; Lum Y; Cooper JK; Toma FM; Wang LW; Sharp ID; Bell AT; Ager JW
    J Am Chem Soc; 2015 Aug; 137(30):9595-603. PubMed ID: 26161845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Optically and Electrochemically Decoupled Monolithic Photoelectrochemical Cell for High-Performance Solar-Driven Water Splitting.
    Oh S; Song H; Oh J
    Nano Lett; 2017 Sep; 17(9):5416-5422. PubMed ID: 28800240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g).
    Roske CW; Popczun EJ; Seger B; Read CG; Pedersen T; Hansen O; Vesborg PC; Brunschwig BS; Schaak RE; Chorkendorff I; Gray HB; Lewis NS
    J Phys Chem Lett; 2015 May; 6(9):1679-83. PubMed ID: 26263333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces.
    Yang J; Walczak K; Anzenberg E; Toma FM; Yuan G; Beeman J; Schwartzberg A; Lin Y; Hettick M; Javey A; Ager JW; Yano J; Frei H; Sharp ID
    J Am Chem Soc; 2014 Apr; 136(17):6191-4. PubMed ID: 24720554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient solar water oxidation using photovoltaic devices functionalized with earth-abundant oxygen evolving catalysts.
    Cristino V; Berardi S; Caramori S; Argazzi R; Carli S; Meda L; Tacca A; Bignozzi CA
    Phys Chem Chem Phys; 2013 Aug; 15(31):13083-92. PubMed ID: 23820552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting.
    Morales-Guio CG; Mayer MT; Yella A; Tilley SD; Grätzel M; Hu X
    J Am Chem Soc; 2015 Aug; 137(31):9927-36. PubMed ID: 26200221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving BiVO4 photoanodes for solar water splitting through surface passivation.
    Liang Y; Messinger J
    Phys Chem Chem Phys; 2014 Jun; 16(24):12014-20. PubMed ID: 24845546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation.
    Kenney MJ; Gong M; Li Y; Wu JZ; Feng J; Lanza M; Dai H
    Science; 2013 Nov; 342(6160):836-40. PubMed ID: 24233719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte.
    Qiu Y; Xin L; Li W
    Langmuir; 2014 Jul; 30(26):7893-901. PubMed ID: 24914708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CuO-Functionalized Silicon Photoanodes for Photoelectrochemical Water Splitting Devices.
    Shi Y; Gimbert-Suriñach C; Han T; Berardi S; Lanza M; Llobet A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):696-702. PubMed ID: 26651152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocrystalline Boron-Doped Diamond as a Corrosion-Resistant Anode for Water Oxidation via Si Photoelectrodes.
    Ashcheulov P; Taylor A; Mortet V; Poruba A; Le Formal F; Krýsová H; Klementová M; Hubík P; Kopeček J; Lorinčík J; Yum JH; Kratochvílová I; Kavan L; Sivula K
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29552-29564. PubMed ID: 30084638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoporous Cubic Silicon Carbide Photoanodes for Enhanced Solar Water Splitting.
    Jian JX; Jokubavicius V; Syväjärvi M; Yakimova R; Sun J
    ACS Nano; 2021 Mar; 15(3):5502-5512. PubMed ID: 33605135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the Si/TiO2/BiVO4 heterojunction on the onset potential of photocurrents for solar water oxidation.
    Jung H; Chae SY; Shin C; Min BK; Joo OS; Hwang YJ
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5788-96. PubMed ID: 25720751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable, highly stable Si-based metal-insulator-semiconductor photoanodes for water oxidation fabricated using thin-film reactions and electrodeposition.
    Lee S; Ji L; De Palma AC; Yu ET
    Nat Commun; 2021 Jun; 12(1):3982. PubMed ID: 34172754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.