These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26262494)

  • 1. Amide I Vibrational Properties Affected by Hydrogen Bonding Out-of-Plane of the Peptide Group.
    Torii H
    J Phys Chem Lett; 2015 Feb; 6(4):727-33. PubMed ID: 26262494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary Structure Dependence and Hydration Effect of the Infrared Intensity of the Amide II Mode of Peptide Chains.
    Torii H; Kawanaka M
    J Phys Chem B; 2016 Mar; 120(8):1624-34. PubMed ID: 26618246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermolecular charge flux as the origin of infrared intensity enhancement upon halogen-bond formation of the peptide group.
    Torii H
    J Chem Phys; 2010 Jul; 133(3):034504. PubMed ID: 20649334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncovering the Sensitivity of Amide-II Vibration to Peptide-Ion Interactions.
    Zhao J; Wang J
    J Phys Chem B; 2016 Sep; 120(36):9590-8. PubMed ID: 27537202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of the scalar and vector components of the solvation effects on the vibrational properties of hydrogen- or halogen-bond accepting stretching modes.
    Torii H; Noge S
    Phys Chem Chem Phys; 2016 Apr; 18(15):10081-96. PubMed ID: 27009802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amide-I relaxation-induced hydrogen bond distortion: An intermediate in electron capture dissociation mass spectrometry of alpha-helical peptides?
    Pouthier V; Tsybin YO
    J Chem Phys; 2008 Sep; 129(9):095106. PubMed ID: 19044894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hofmeister anionic effects on hydration electric fields around water and peptide.
    Kim H; Lee H; Lee G; Kim H; Cho M
    J Chem Phys; 2012 Mar; 136(12):124501. PubMed ID: 22462868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Study of Helical and Helix-Hinge-Helix Conformations of an Anti-Microbial Peptide in Solution by Molecular Dynamics and Vibrational Analysis.
    Joodaki F; Martin LM; Greenfield ML
    J Phys Chem B; 2021 Jan; 125(3):703-721. PubMed ID: 33464100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amide I vibrational frequencies of alpha-helical peptides based upon ONIOM and density functional theory (DFT) studies.
    Wieczorek R; Dannenberg JJ
    J Phys Chem B; 2008 Jan; 112(4):1320-8. PubMed ID: 18179198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting amide-I vibration in β-peptide helices.
    Zhao J; Wang J
    J Phys Chem B; 2015 Feb; 119(8):3387-97. PubMed ID: 25636064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The solvent-dependent shift of the amide I band of a fully solvated peptide as a local probe for the solvent composition in the peptide/solvent interface.
    Paschek D; Pühse M; Perez-Goicochea A; Gnanakaran S; García AE; Winter R; Geiger A
    Chemphyschem; 2008 Dec; 9(18):2742-50. PubMed ID: 19035605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amide I vibrational dynamics of N-methylacetamide in polar solvents: the role of electrostatic interactions.
    DeCamp MF; DeFlores L; McCracken JM; Tokmakoff A; Kwac K; Cho M
    J Phys Chem B; 2005 Jun; 109(21):11016-26. PubMed ID: 16852342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared and vibrational CD spectra of partially solvated alpha-helices: DFT-based simulations with explicit solvent.
    Turner DR; Kubelka J
    J Phys Chem B; 2007 Feb; 111(7):1834-45. PubMed ID: 17256894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Anionic Effect on Water Structure and Indirect Anionic Effect on Peptide Backbone Hydration State Revealed by Thin-Layer Infrared Spectroscopy.
    Zhao J; Wang J
    J Phys Chem B; 2018 Jan; 122(1):68-76. PubMed ID: 29232512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen-bonding dynamics in aqueous solutions of amides and acids: monomer, dimer, trimer, and polymer.
    Shirota H; Ushiyama H
    J Phys Chem B; 2008 Oct; 112(43):13542-51. PubMed ID: 18841884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide.
    Çırak Ç; Sert Y; Ucun F
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Sep; 113():130-6. PubMed ID: 23714189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear and two-dimensional infrared spectroscopic study of the amide I and II modes in fully extended peptide chains.
    Maekawa H; Ballano G; Toniolo C; Ge NH
    J Phys Chem B; 2011 May; 115(18):5168-82. PubMed ID: 20845957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational Coupling on Stepwise Hydrogen Bond Formation of Amide I.
    Ghosh A
    J Phys Chem B; 2019 Sep; 123(37):7771-7776. PubMed ID: 31448608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Amide-II Vibrations in β-Peptides.
    Zhao J; Wang J
    J Phys Chem B; 2015 Nov; 119(47):14831-9. PubMed ID: 26528958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramolecular hydrogen bonding motifs in deprotonated glycine peptides by cryogenic ion infrared spectroscopy.
    Marsh BM; Duffy EM; Soukup MT; Zhou J; Garand E
    J Phys Chem A; 2014 Jun; 118(22):3906-12. PubMed ID: 24809762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.