These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 26262959)
1. Superhalogens: A Bridge between Complex Metal Hydrides and Li Ion Batteries. Jena P J Phys Chem Lett; 2015 Apr; 6(7):1119-25. PubMed ID: 26262959 [TBL] [Abstract][Full Text] [Related]
2. Superhalogens as building blocks of halogen-free electrolytes in lithium-ion batteries. Giri S; Behera S; Jena P Angew Chem Int Ed Engl; 2014 Dec; 53(50):13916-9. PubMed ID: 25314685 [TBL] [Abstract][Full Text] [Related]
3. Li@organic superhalogens: possible electrolytes in Li-ion batteries. Naaresh Reddy G; Parida R; Giri S Chem Commun (Camb); 2017 Aug; 53(71):9942-9945. PubMed ID: 28829461 [TBL] [Abstract][Full Text] [Related]
4. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Bhatt MD; O'Dwyer C Phys Chem Chem Phys; 2015 Feb; 17(7):4799-844. PubMed ID: 25613366 [TBL] [Abstract][Full Text] [Related]
5. Complex metal borohydrides: multifunctional materials for energy storage and conversion. Mohtadi R; Remhof A; Jena P J Phys Condens Matter; 2016 Sep; 28(35):353001. PubMed ID: 27384871 [TBL] [Abstract][Full Text] [Related]
6. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
7. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Wang ZL; Xu D; Xu JJ; Zhang XB Chem Soc Rev; 2014 Nov; 43(22):7746-86. PubMed ID: 24056780 [TBL] [Abstract][Full Text] [Related]
8. Metal hydrides for lithium-ion batteries. Oumellal Y; Rougier A; Nazri GA; Tarascon JM; Aymard L Nat Mater; 2008 Nov; 7(11):916-21. PubMed ID: 18849978 [TBL] [Abstract][Full Text] [Related]
9. Sodium-metal halide and sodium-air batteries. Ha S; Kim JK; Choi A; Kim Y; Lee KT Chemphyschem; 2014 Jul; 15(10):1971-82. PubMed ID: 24953300 [TBL] [Abstract][Full Text] [Related]
10. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Thangadurai V; Narayanan S; Pinzaru D Chem Soc Rev; 2014 Jul; 43(13):4714-27. PubMed ID: 24681593 [TBL] [Abstract][Full Text] [Related]
11. Structural limitations for optimizing garnet-type solid electrolytes: a perspective. Zeier WG Dalton Trans; 2014 Nov; 43(43):16133-8. PubMed ID: 25277079 [TBL] [Abstract][Full Text] [Related]
12. Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries. Li Q; Cao R; Cho J; Wu G Phys Chem Chem Phys; 2014 Jul; 16(27):13568-82. PubMed ID: 24715024 [TBL] [Abstract][Full Text] [Related]
13. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
14. New Horizons for Conventional Lithium Ion Battery Technology. Erickson EM; Ghanty C; Aurbach D J Phys Chem Lett; 2014 Oct; 5(19):3313-24. PubMed ID: 26278438 [TBL] [Abstract][Full Text] [Related]
15. Prospects and Limits of Energy Storage in Batteries. Abraham KM J Phys Chem Lett; 2015 Mar; 6(5):830-44. PubMed ID: 26262660 [TBL] [Abstract][Full Text] [Related]
16. Design of superhalogens using a core-shell structure model. Liu Z; Liu X; Zhao J Nanoscale; 2017 Dec; 9(47):18781-18787. PubMed ID: 29171612 [TBL] [Abstract][Full Text] [Related]
17. Complex hydrides with (BH(4))(-) and (NH(2))(-) anions as new lithium fast-ion conductors. Matsuo M; Remhof A; Martelli P; Caputo R; Ernst M; Miura Y; Sato T; Oguchi H; Maekawa H; Takamura H; Borgschulte A; Züttel A; Orimo S J Am Chem Soc; 2009 Nov; 131(45):16389-91. PubMed ID: 19856969 [TBL] [Abstract][Full Text] [Related]
18. Accurate static and dynamic properties of liquid electrolytes for Li-ion batteries from ab initio molecular dynamics. Ganesh P; Jiang DE; Kent PR J Phys Chem B; 2011 Mar; 115(12):3085-90. PubMed ID: 21384941 [TBL] [Abstract][Full Text] [Related]