These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 26263131)

  • 41. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids.
    Proppe AH; Xu J; Sabatini RP; Fan JZ; Sun B; Hoogland S; Kelley SO; Voznyy O; Sargent EH
    Nano Lett; 2018 Nov; 18(11):7052-7059. PubMed ID: 30359524
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatial Localization of Excitons and Charge Carriers in Hybrid Perovskite Thin Films.
    Simpson MJ; Doughty B; Yang B; Xiao K; Ma YZ
    J Phys Chem Lett; 2015 Aug; 6(15):3041-7. PubMed ID: 26267200
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Harmonic Quantum Coherence of Multiple Excitons in PbS/CdS Core-Shell Nanocrystals.
    Tahara H; Sakamoto M; Teranishi T; Kanemitsu Y
    Phys Rev Lett; 2017 Dec; 119(24):247401. PubMed ID: 29286717
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Correlated Single Quantum Dot Blinking and Interfacial Electron Transfer Dynamics.
    Jin S; Hsiang JC; Zhu H; Song N; Dickson RM; Lian T
    Chem Sci; 2010 Aug; 1(4):519-526. PubMed ID: 21915369
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultrafast photophysical process of bi-exciton Auger recombination in CuInS
    Yang G; Shi S; Zhang X; Zhou S; Liu D; Liang Y; Chen Z; Liang G
    Opt Express; 2021 Mar; 29(6):9012-9020. PubMed ID: 33820339
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C₆₁-butyric acid methyl ester interface.
    El-Ballouli AO; Alarousu E; Bernardi M; Aly SM; Lagrow AP; Bakr OM; Mohammed OF
    J Am Chem Soc; 2014 May; 136(19):6952-9. PubMed ID: 24521255
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Influence of Doping on the Optoelectronic Properties of PbS Colloidal Quantum Dot Solids.
    Papagiorgis P; Stavrinadis A; Othonos A; Konstantatos G; Itskos G
    Sci Rep; 2016 Jan; 6():18735. PubMed ID: 26743934
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exciton dynamics and annihilation in WS2 2D semiconductors.
    Yuan L; Huang L
    Nanoscale; 2015 Apr; 7(16):7402-8. PubMed ID: 25826397
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative Electrochemical Control over Optical Gain in Quantum-Dot Solids.
    Geuchies JJ; Brynjarsson B; Grimaldi G; Gudjonsdottir S; van der Stam W; Evers WH; Houtepen AJ
    ACS Nano; 2021 Jan; 15(1):377-386. PubMed ID: 33171052
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transient photoconductivity and free carrier dynamics in a monolayer WS
    Xu S; Yang J; Jiang H; Su F; Zeng Z
    Nanotechnology; 2019 Jun; 30(26):265706. PubMed ID: 30861497
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Non-Poissonian formation of multiple excitons in photoexcited CdTe colloidal quantum qots by femtosecond nonresonant two-photon absorption.
    Gandman A; Bronstein-Tojen M; Kloper V; Muallem M; Yanover D; Lifshitz E; Amitay Z
    Opt Express; 2013 Oct; 21(20):24300-8. PubMed ID: 24104339
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiexciton annihilation and dissociation in quantum confined semiconductor nanocrystals.
    Zhu H; Yang Y; Lian T
    Acc Chem Res; 2013 Jun; 46(6):1270-9. PubMed ID: 23148478
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Charging of quantum dots by sulfide redox electrolytes reduces electron injection efficiency in quantum dot sensitized solar cells.
    Zhu H; Song N; Lian T
    J Am Chem Soc; 2013 Aug; 135(31):11461-4. PubMed ID: 23865741
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Uncovering the Role of Hole Traps in Promoting Hole Transfer from Multiexcitonic Quantum Dots to Molecular Acceptors.
    Yan C; Weinberg D; Jasrasaria D; Kolaczkowski MA; Liu ZJ; Philbin JP; Balan AD; Liu Y; Schwartzberg AM; Rabani E; Alivisatos AP
    ACS Nano; 2021 Feb; 15(2):2281-2291. PubMed ID: 33336575
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiple exciton generation and dissociation in PbS quantum dot-electron acceptor complexes.
    Yang Y; Rodríguez-Córdoba W; Lian T
    Nano Lett; 2012 Aug; 12(8):4235-41. PubMed ID: 22757981
    [TBL] [Abstract][Full Text] [Related]  

  • 57. One- and two-photon induced QD-based energy transfer and the influence of multiple QD excitations.
    Dayal S; Burda C
    Photochem Photobiol Sci; 2008 May; 7(5):605-13. PubMed ID: 18465017
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Auger Recombination in Self-Assembled Quantum Dots: Quenching and Broadening of the Charged Exciton Transition.
    Kurzmann A; Ludwig A; Wieck AD; Lorke A; Geller M
    Nano Lett; 2016 May; 16(5):3367-72. PubMed ID: 27087053
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films.
    Miller EM; Kroupa DM; Zhang J; Schulz P; Marshall AR; Kahn A; Lany S; Luther JM; Beard MC; Perkins CL; van de Lagemaat J
    ACS Nano; 2016 Mar; 10(3):3302-11. PubMed ID: 26895310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.