These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 26263132)
1. Origin of Dirac Cones in SiC Silagraphene: A Combined Density Functional and Tight-Binding Study. Qin X; Liu Y; Li X; Xu J; Chi B; Zhai D; Zhao X J Phys Chem Lett; 2015 Apr; 6(8):1333-9. PubMed ID: 26263132 [TBL] [Abstract][Full Text] [Related]
2. Origins of Dirac cone formation in AB Qin X; Wu Y; Liu Y; Chi B; Li X; Wang Y; Zhao X Sci Rep; 2017 Sep; 7(1):10546. PubMed ID: 28874708 [TBL] [Abstract][Full Text] [Related]
3. Mirror symmetry origin of Dirac cone formation in rectangular two-dimensional materials. Qin X; Liu Y; Yang G; Zhao D Phys Chem Chem Phys; 2020 Mar; 22(12):6619-6625. PubMed ID: 32159548 [TBL] [Abstract][Full Text] [Related]
5. Origins of Dirac cones and parity dependent electronic structures of α-graphyne derivatives and silagraphynes. Qin X; Liu Y; Chi B; Zhao X; Li X Nanoscale; 2016 Aug; 8(33):15223-32. PubMed ID: 27485886 [TBL] [Abstract][Full Text] [Related]
6. Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation. Zhao M; Xia Y; Zhang RQ; Lee ST J Chem Phys; 2005 Jun; 122(21):214707. PubMed ID: 15974762 [TBL] [Abstract][Full Text] [Related]
7. Emergence of the Dirac Electron System in a Single-Component Molecular Conductor under High Pressure. Kato R; Cui H; Tsumuraya T; Miyazaki T; Suzumura Y J Am Chem Soc; 2017 Feb; 139(5):1770-1773. PubMed ID: 28121146 [TBL] [Abstract][Full Text] [Related]
8. Dirac cones in bipartite square-octagon lattice: A theoretical approach. He J; Liu Z J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37522410 [TBL] [Abstract][Full Text] [Related]
9. SiC2 silagraphene and its one-dimensional derivatives: where planar tetracoordinate silicon happens. Li Y; Li F; Zhou Z; Chen Z J Am Chem Soc; 2011 Feb; 133(4):900-8. PubMed ID: 21182250 [TBL] [Abstract][Full Text] [Related]
10. Determining Locations of Conduction Bands and Valence Bands of Semiconductor Nanoparticles Based on Their Band Gaps. Shao Q; Lin H; Shao M ACS Omega; 2020 May; 5(18):10297-10300. PubMed ID: 32426586 [TBL] [Abstract][Full Text] [Related]
11. First-principles prediction of a new Dirac-fermion material: silicon germanide monolayer. Zhou H; Zhao M; Zhang X; Dong W; Wang X; Bu H; Wang A J Phys Condens Matter; 2013 Oct; 25(39):395501. PubMed ID: 23945421 [TBL] [Abstract][Full Text] [Related]
12. Highly Anisotropic Dirac Fermions in Square Graphynes. Zhang LZ; Wang ZF; Wang ZM; Du SX; Gao HJ; Liu F J Phys Chem Lett; 2015 Aug; 6(15):2959-62. PubMed ID: 26267188 [TBL] [Abstract][Full Text] [Related]
13. Crystal structures and the electronic properties of silicon-rich silicon carbide materials by first principle calculations. Alkhaldi ND; Barman SK; Huda MN Heliyon; 2019 Nov; 5(11):e02908. PubMed ID: 31844763 [TBL] [Abstract][Full Text] [Related]
14. Semimetallic carbon honeycombs: new three-dimensional graphene allotropes with Dirac cones. Wang S; Wu D; Yang B; Ruckenstein E; Chen H Nanoscale; 2018 Feb; 10(6):2748-2754. PubMed ID: 29336453 [TBL] [Abstract][Full Text] [Related]
15. A hybrid density functional study of zigzag SiC nanotubes. Alam KM; Ray AK Nanotechnology; 2007 Dec; 18(49):495706. PubMed ID: 20442487 [TBL] [Abstract][Full Text] [Related]
16. Observation of gapped Dirac cones in a two-dimensional Su-Schrieffer-Heeger lattice. Geng D; Zhou H; Yue S; Sun Z; Cheng P; Chen L; Meng S; Wu K; Feng B Nat Commun; 2022 Nov; 13(1):7000. PubMed ID: 36385244 [TBL] [Abstract][Full Text] [Related]
17. Na Ji WX; Zhang BM; Zhang SF; Zhang CW; Ding M; Wang PJ; Zhang R Nanoscale; 2018 Jul; 10(28):13645-13651. PubMed ID: 29985502 [TBL] [Abstract][Full Text] [Related]
18. Predicting a graphene-like WB Zhang C; Jiao Y; Ma F; Bottle S; Zhao M; Chen Z; Du A Phys Chem Chem Phys; 2017 Feb; 19(7):5449-5453. PubMed ID: 28165108 [TBL] [Abstract][Full Text] [Related]
19. A New Anisotropic Dirac Cone Material: A B Zhao Y; Li X; Liu J; Zhang C; Wang Q J Phys Chem Lett; 2018 Apr; 9(7):1815-1820. PubMed ID: 29575891 [TBL] [Abstract][Full Text] [Related]
20. The Dirac cone in two-dimensional tetragonal silicon carbides: a ring coupling mechanism. Kong W; Xiao X; Xu W; Wang R; Gan LY; Wei J; Fan J; Wu X Nanoscale; 2021 Nov; 13(43):18267-18272. PubMed ID: 34714316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]