These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26263157)

  • 1. Phase Dependence of Double-Resonance Experiments in Rotational Spectroscopy.
    Schmitz D; Shubert VA; Patterson D; Krin A; Schnell M
    J Phys Chem Lett; 2015 Apr; 6(8):1493-8. PubMed ID: 26263157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AC Stark Effect Observed in a Microwave-Millimeter/Submillimeter Wave Double-Resonance Experiment.
    Roenitz KM; Hays BM; Powers CR; McCabe MN; Smith H; Widicus Weaver SL; Shipman ST
    J Phys Chem A; 2018 Aug; 122(30):6321-6327. PubMed ID: 29993251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave spectral taxonomy: A semi-automated combination of chirped-pulse and cavity Fourier-transform microwave spectroscopy.
    Crabtree KN; Martin-Drumel MA; Brown GG; Gaster SA; Hall TM; McCarthy MC
    J Chem Phys; 2016 Mar; 144(12):124201. PubMed ID: 27036440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional chirped-pulse Fourier transform microwave spectroscopy.
    Wilcox DS; Hotopp KM; Dian BC
    J Phys Chem A; 2011 Aug; 115(32):8895-905. PubMed ID: 21728367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next generation techniques in the high resolution spectroscopy of biologically relevant molecules.
    Neill JL; Douglass KO; Pate BH; Pratt DW
    Phys Chem Chem Phys; 2011 Apr; 13(16):7253-62. PubMed ID: 21394332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated microwave double resonance spectroscopy: A tool to identify and characterize chemical compounds.
    Martin-Drumel MA; McCarthy MC; Patterson D; McGuire BA; Crabtree KN
    J Chem Phys; 2016 Mar; 144(12):124202. PubMed ID: 27036441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspective: The first ten years of broadband chirped pulse Fourier transform microwave spectroscopy.
    Park GB; Field RW
    J Chem Phys; 2016 May; 144(20):200901. PubMed ID: 27250271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural studies of biomolecules in the gas phase by chirped-pulse Fourier transform microwave spectroscopy.
    Steber AL; Neill JL; Zaleski DP; Pate BH; Lesarri A; Bird RG; Vaquero-Vara V; Pratt DW
    Faraday Discuss; 2011; 150():227-42; discussion 257-92. PubMed ID: 22457951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Millimeter-wave optical double resonance schemes for rapid assignment of perturbed spectra, with applications to the C̃ (1)B(2) state of SO2.
    Park GB; Womack CC; Whitehill AR; Jiang J; Ono S; Field RW
    J Chem Phys; 2015 Apr; 142(14):144201. PubMed ID: 25877571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A broadband Fourier transform microwave spectrometer based on chirped pulse excitation.
    Brown GG; Dian BC; Douglass KO; Geyer SM; Shipman ST; Pate BH
    Rev Sci Instrum; 2008 May; 79(5):053103. PubMed ID: 18513057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the conformational landscape of menthol, menthone, and isomenthone: a microwave study.
    Schmitz D; Shubert VA; Betz T; Schnell M
    Front Chem; 2015; 3():15. PubMed ID: 25815287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autler-Townes splitting in the multiphoton resonance ionization spectrum of molecules produced by ultrashort laser pulses.
    Sun Z; Lou N
    Phys Rev Lett; 2003 Jul; 91(2):023002. PubMed ID: 12906478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Millimeter-wave-detected, millimeter-wave optical polarization spectroscopy.
    Steeves AH; Bechtel HA; Coy SL; Field RW
    J Chem Phys; 2005 Oct; 123(14):141102. PubMed ID: 16238366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Structure and Chirality Detection by Fourier Transform Microwave Spectroscopy.
    Lobsiger S; Perez C; Evangelisti L; Lehmann KK; Pate BH
    J Phys Chem Lett; 2015 Jan; 6(1):196-200. PubMed ID: 26263113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based fourier transform microwave spectroscopic study.
    Thomas J; Serrato A; Lin W; Jäger W; Xu Y
    Chemistry; 2014 May; 20(20):6148-53. PubMed ID: 24756992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and evaluation of a pulsed-jet chirped-pulse millimeter-wave spectrometer for the 70-102 GHz region.
    Park GB; Steeves AH; Kuyanov-Prozument K; Neill JL; Field RW
    J Chem Phys; 2011 Jul; 135(2):024202. PubMed ID: 21766933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propagating molecular rotational coherences through single-frequency pulses in the strong field regime.
    Hernandez-Castillo AO; Abeysekera C; Robicheaux F; Zwier TS
    J Chem Phys; 2019 Aug; 151(8):084312. PubMed ID: 31470710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-printed slit nozzles for Fourier transform microwave spectroscopy.
    Dewberry CT; Mackenzie RB; Green S; Leopold KR
    Rev Sci Instrum; 2015 Jun; 86(6):065107. PubMed ID: 26133873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural determination and population transfer of 4-nitroanisole by broadband microwave spectroscopy and tailored microwave pulses.
    Graneek JB; Pérez C; Schnell M
    J Chem Phys; 2017 Oct; 147(15):154306. PubMed ID: 29055340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexed characterization of complex gas-phase mixtures combining chirped-pulse Fourier transform microwave spectroscopy and VUV photoionization time-of-flight mass spectrometry.
    Fritz SM; Hays BM; Hernandez-Castillo AO; Abeysekera C; Zwier TS
    Rev Sci Instrum; 2018 Sep; 89(9):093101. PubMed ID: 30278727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.