BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 26263250)

  • 1. Dominant Decomposition Pathways for Ethereal Solvents in Li-O2 Batteries.
    García JM; Horn HW; Rice JE
    J Phys Chem Lett; 2015 May; 6(10):1795-9. PubMed ID: 26263250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Accurate O2 and Li2O2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li-O2 Batteries.
    McCloskey BD; Valery A; Luntz AC; Gowda SR; Wallraff GM; Garcia JM; Mori T; Krupp LE
    J Phys Chem Lett; 2013 Sep; 4(17):2989-93. PubMed ID: 26706312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry.
    McCloskey BD; Bethune DS; Shelby RM; Girishkumar G; Luntz AC
    J Phys Chem Lett; 2011 May; 2(10):1161-6. PubMed ID: 26295320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limitations in Rechargeability of Li-O2 Batteries and Possible Origins.
    McCloskey BD; Bethune DS; Shelby RM; Mori T; Scheffler R; Speidel A; Sherwood M; Luntz AC
    J Phys Chem Lett; 2012 Oct; 3(20):3043-7. PubMed ID: 26292247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode.
    Camacho-Forero LE; Balbuena PB
    Phys Chem Chem Phys; 2017 Nov; 19(45):30861-30873. PubMed ID: 29135003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries.
    McCloskey BD; Garcia JM; Luntz AC
    J Phys Chem Lett; 2014 Apr; 5(7):1230-5. PubMed ID: 26274476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cycling Li-O₂ batteries via LiOH formation and decomposition.
    Liu T; Leskes M; Yu W; Moore AJ; Zhou L; Bayley PM; Kim G; Grey CP
    Science; 2015 Oct; 350(6260):530-3. PubMed ID: 26516278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on the Cyclability of Lithium-Oxygen Cells in a Confined Potential Window using Cathodes with Pre-filled Discharge Products.
    Geng D; Ding N; Hor TS; Chien SW; Liu Z; Zong Y
    Chem Asian J; 2015 Oct; 10(10):2182-9. PubMed ID: 26011604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoupling the Cumulative Contributions of Capacity Fade in Ethereal-Based Li-O
    Karkera G; Prakash AS
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27870-27881. PubMed ID: 31298520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Descriptors for Solvent Stability in Nonaqueous Li-O2 Batteries.
    Khetan A; Pitsch H; Viswanathan V
    J Phys Chem Lett; 2014 Apr; 5(8):1318-23. PubMed ID: 26269974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries.
    Beyer H; Meini S; Tsiouvaras N; Piana M; Gasteiger HA
    Phys Chem Chem Phys; 2013 Jul; 15(26):11025-37. PubMed ID: 23715054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Molten Salt Lithium-Oxygen Battery.
    Giordani V; Tozier D; Tan H; Burke CM; Gallant BM; Uddin J; Greer JR; McCloskey BD; Chase GV; Addison D
    J Am Chem Soc; 2016 Mar; 138(8):2656-63. PubMed ID: 26871485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity.
    Burke CM; Pande V; Khetan A; Viswanathan V; McCloskey BD
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9293-8. PubMed ID: 26170330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Key scientific challenges in current rechargeable non-aqueous Li-O2 batteries: experiment and theory.
    Bhatt MD; Geaney H; Nolan M; O'Dwyer C
    Phys Chem Chem Phys; 2014 Jun; 16(24):12093-130. PubMed ID: 24833409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Au Microlattices as Positive Electrodes for Li-O2 Batteries.
    Xu C; Gallant BM; Wunderlich PU; Lohmann T; Greer JR
    ACS Nano; 2015 Jun; 9(6):5876-83. PubMed ID: 25950649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries.
    Kwabi DG; Batcho TP; Amanchukwu CV; Ortiz-Vitoriano N; Hammond P; Thompson CV; Shao-Horn Y
    J Phys Chem Lett; 2014 Aug; 5(16):2850-6. PubMed ID: 26278088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Study of Lithium-Air Battery Oxygen Cathodes in Different Solvent-Electrolyte pairs.
    Marchini F; Herrera S; Torres W; Tesio AY; Williams FJ; Calvo EJ
    Langmuir; 2015 Aug; 31(33):9236-45. PubMed ID: 26222833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell.
    Lim HK; Lim HD; Park KY; Seo DH; Gwon H; Hong J; Goddard WA; Kim H; Kang K
    J Am Chem Soc; 2013 Jul; 135(26):9733-42. PubMed ID: 23758262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Challenge of Electrolyte Solutions for Li-Air Batteries: Monitoring Oxygen Reduction and Related Reactions in Polyether Solutions by Spectroscopy and EQCM.
    Sharon D; Etacheri V; Garsuch A; Afri M; Frimer AA; Aurbach D
    J Phys Chem Lett; 2013 Jan; 4(1):127-31. PubMed ID: 26291224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TEMPO: a mobile catalyst for rechargeable Li-O₂ batteries.
    Bergner BJ; Schürmann A; Peppler K; Garsuch A; Janek J
    J Am Chem Soc; 2014 Oct; 136(42):15054-64. PubMed ID: 25255228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.