These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26263464)

  • 1. Accelerating Electrolyte Discovery for Energy Storage with High-Throughput Screening.
    Cheng L; Assary RS; Qu X; Jain A; Ong SP; Rajput NN; Persson K; Curtiss LA
    J Phys Chem Lett; 2015 Jan; 6(2):283-91. PubMed ID: 26263464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes.
    Wang ZL; Xu D; Xu JJ; Zhang XB
    Chem Soc Rev; 2014 Nov; 43(22):7746-86. PubMed ID: 24056780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantitative evaluation of computational methods to accelerate the study of alloxazine-derived electroactive compounds for energy storage.
    Zhang Q; Khetan A; Er S
    Sci Rep; 2021 Feb; 11(1):4089. PubMed ID: 33603045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Computational Protocol Combining DFT and Cheminformatics for Prediction of pH-Dependent Redox Potentials.
    Fornari RP; de Silva P
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34209898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the redox chemistry of anthraquinone derivatives using density functional theory.
    Bachman JE; Curtiss LA; Assary RS
    J Phys Chem A; 2014 Sep; 118(38):8852-60. PubMed ID: 25159500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Performance of Aqueous Organic Redox Flow Batteries via First-Principles Calculations.
    Yu J; Zhao TS; Pan D
    J Phys Chem Lett; 2020 Dec; 11(24):10433-10438. PubMed ID: 33269931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of Electrochemical, Structural, and Transport Properties in Nonaqueous Zinc Electrolytes.
    Han SD; Rajput NN; Qu X; Pan B; He M; Ferrandon MS; Liao C; Persson KA; Burrell AK
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3021-31. PubMed ID: 26765789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A search map for organic additives and solvents applicable in high-voltage rechargeable batteries.
    Park MS; Park I; Kang YS; Im D; Doo SG
    Phys Chem Chem Phys; 2016 Sep; 18(38):26807-26815. PubMed ID: 27711632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating the Search for New Solid Electrolytes: Exploring Vast Chemical Space with Machine Learning-Enabled Computational Calculations.
    Kim J; Mok DH; Kim H; Back S
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37924286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery.
    Wei X; Xu W; Huang J; Zhang L; Walter E; Lawrence C; Vijayakumar M; Henderson WA; Liu T; Cosimbescu L; Li B; Sprenkle V; Wang W
    Angew Chem Int Ed Engl; 2015 Jul; 54(30):8684-7. PubMed ID: 25891480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biredox Eutectic Electrolytes Derived from Organic Redox-Active Molecules: High-Energy Storage Systems.
    Zhang C; Qian Y; Ding Y; Zhang L; Guo X; Zhao Y; Yu G
    Angew Chem Int Ed Engl; 2019 May; 58(21):7045-7050. PubMed ID: 30938026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of computational chemistry methods for the discovery of quinone-based electroactive compounds for energy storage.
    Zhang Q; Khetan A; Er S
    Sci Rep; 2020 Dec; 10(1):22149. PubMed ID: 33335155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries.
    Sevov CS; Brooner RE; Chénard E; Assary RS; Moore JS; Rodríguez-López J; Sanford MS
    J Am Chem Soc; 2015 Nov; 137(45):14465-72. PubMed ID: 26514666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the Redox Chemistry of Organosulfides Towards Stable Molecule Design in Nonaqueous Energy Storage Systems.
    Zhang L; Zhao B; Zhang C; Yu G
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):4322-4328. PubMed ID: 33170992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-energy redox-flow batteries with hybrid metal foam electrodes.
    Park MS; Lee NJ; Lee SW; Kim KJ; Oh DJ; Kim YJ
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10729-35. PubMed ID: 24906030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elemental Selenium for Electrochemical Energy Storage.
    Yang CP; Yin YX; Guo YG
    J Phys Chem Lett; 2015 Jan; 6(2):256-66. PubMed ID: 26263460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.