These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 26263844)

  • 1. Activating Aluminum Reactivity with Fluoropolymer Coatings for Improved Energetic Composite Combustion.
    McCollum J; Pantoya ML; Iacono ST
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18742-9. PubMed ID: 26263844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A latent highly activity energetic fuel: thermal stability and interfacial reaction kinetics of selected fluoropolymer encapsulated sub-micron sized Al particles.
    Wang H; Ren H; Yan T; Li Y; Zhao W
    Sci Rep; 2021 Jan; 11(1):738. PubMed ID: 33436998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the Reactivity of Perfluoropolyether-Functionalized Aluminum Nanoparticles by the Reaction Interface Fuel-Oxidizer Ratio.
    Wu C; Nie J; Li S; Wang W; Pan Q; Guo X
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking molecular level chemistry to macroscopic combustion behavior for nano-energetic materials with halogen containing oxides.
    Farley CW; Pantoya ML; Losada M; Chaudhuri S
    J Chem Phys; 2013 Aug; 139(7):074701. PubMed ID: 23968101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial chemistry in Al/CuO reactive nanomaterial and its role in exothermic reaction.
    Kwon J; Ducéré JM; Alphonse P; Bahrami M; Petrantoni M; Veyan JF; Tenailleau C; Estève A; Rossi C; Chabal YJ
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):605-13. PubMed ID: 23289538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small angle X-ray scattering analysis of the effect of cold compaction of Al/MoO3 thermite composites.
    Hammons JA; Wang W; Ilavsky J; Pantoya ML; Weeks BL; Vaughn MW
    Phys Chem Chem Phys; 2008 Jan; 10(1):193-9. PubMed ID: 18075699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Different Nanocarbon Materials on the Properties of Al/MoO
    Zhang M; Ren H; Cui Q; Li H; Chen Y
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro- and Nanoscale Energetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators.
    Kim SB; Kim KJ; Cho MH; Kim JH; Kim KT; Kim SH
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9405-12. PubMed ID: 27007287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perfluoroalkyl-Functionalized Graphene Oxide as a Multifunctional Additive for Promoting the Energetic Performance of Aluminum.
    Jiang Y; Wang H; Baek J; Ka D; Huynh AH; Wang Y; Zachariah MR; Zheng X
    ACS Nano; 2022 Sep; 16(9):14658-14665. PubMed ID: 36099637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Energetic Performance of Aluminum Nanoparticles by Plasma Deposition of Perfluorinated Nanofilms.
    Agarwal PPK; Matsoukas T
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35255-35264. PubMed ID: 35862005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elementary surface chemistry during CuO/Al nanolaminate-thermite synthesis: copper and oxygen deposition on aluminum (111) surfaces.
    Lanthony C; Guiltat M; Ducéré JM; Verdier A; Hémeryck A; Djafari-Rouhani M; Rossi C; Chabal YJ; Estève A
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15086-97. PubMed ID: 25089744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of metal iodates from an energetic salt.
    Shancita I; Miller KK; Silverstein PD; Kalman J; Pantoya ML
    RSC Adv; 2020 Apr; 10(24):14403-14409. PubMed ID: 35498500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Energy Composite Fuels with Improved Combustion Efficiency by Using AlH
    Yu MH; Xu R; Xie WX; Li YJ; Nie HQ; Yan QL
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49611-49622. PubMed ID: 37830898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Energetic-Behaviors of Spontaneously Surface-Mediated Al Particles.
    Kim DW; Kim KT; Min TS; Kim KJ; Kim SH
    Sci Rep; 2017 Jul; 7(1):4659. PubMed ID: 28680039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorination of an Alumina Surface: Modeling Aluminum-Fluorine Reaction Mechanisms.
    Padhye R; Aquino AJA; Tunega D; Pantoya ML
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24290-24297. PubMed ID: 28656765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction Kinetics and Combustion Dynamics of I4O9 and Aluminum Mixtures.
    Smith DK; Pantoya ML; Parkey JS; Kesmez M
    J Vis Exp; 2016 Nov; (117):. PubMed ID: 27842354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Polar Environments on the Aluminum Oxide Shell Surrounding Aluminum Particles: Simulations of Surface Hydroxyl Bonding and Charge.
    Padhye R; Aquino AJ; Tunega D; Pantoya ML
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13926-33. PubMed ID: 27175545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the Reaction Mechanism of Aluminum/Poly(vinylidene fluoride) Composites.
    DeLisio JB; Hu X; Wu T; Egan GC; Young G; Zachariah MR
    J Phys Chem B; 2016 Jun; 120(24):5534-42. PubMed ID: 27228361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergetic Effect of Potassium Oxysalts on Combustion and Ignition of Al/CuO Composites.
    Ma X; Zhao W; Le W; Li J; Chen P; Jiao Q
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver ferrite: a superior oxidizer for thermite-driven biocidal nanoenergetic materials.
    Wu T; Zachariah MR
    RSC Adv; 2019 Jan; 9(4):1831-1840. PubMed ID: 35516147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.