These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26263995)

  • 1. Mechanical and Electrical Characterization of Piezoelectric Artificial Cochlear Device and Biocompatible Packaging.
    Jung Y; Kwak JH; Kang H; Kim WD; Hur S
    Sensors (Basel); 2015 Jul; 15(8):18851-64. PubMed ID: 26263995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model.
    Jang J; Lee J; Woo S; Sly DJ; Campbell LJ; Cho JH; O'Leary SJ; Park MH; Han S; Choi JW; Jang JH; Choi H
    Sci Rep; 2015 Jul; 5():12447. PubMed ID: 26227924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A micropower miniature piezoelectric actuator for implantable middle ear hearing device.
    Wang Z; Mills R; Luo H; Zheng X; Hou W; Wang L; Brown SI; Cuschieri A
    IEEE Trans Biomed Eng; 2011 Feb; 58(2):452-8. PubMed ID: 21041151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a multi-channel piezoelectric acoustic sensor based on an artificial basilar membrane.
    Jung Y; Kwak JH; Lee YH; Kim WD; Hur S
    Sensors (Basel); 2013 Dec; 14(1):117-28. PubMed ID: 24361926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of different stapes prostheses on the passive vibration of the basilar membrane.
    Kwacz M; Marek P; Borkowski P; Gambin W
    Hear Res; 2014 Apr; 310():13-26. PubMed ID: 24463104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a dual-coil type electromagnetic actuator for implantable bone conduction hearing devices.
    Shin DH; Seong KW; Jung ES; Cho JH; Lee KY
    Technol Health Care; 2019; 27(S1):445-454. PubMed ID: 31045559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an electrode for the artificial cochlear sensory epithelium.
    Tona Y; Inaoka T; Ito J; Kawano S; Nakagawa T
    Hear Res; 2015 Dec; 330(Pt A):106-12. PubMed ID: 26299844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hydromechanical biomimetic cochlea: experiments and models.
    Chen F; Cohen HI; Bifano TG; Castle J; Fortin J; Kapusta C; Mountain DC; Zosuls A; Hubbard AE
    J Acoust Soc Am; 2006 Jan; 119(1):394-405. PubMed ID: 16454294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piezoelectric Actuator with Frequency Characteristics for a Middle-Ear Implant.
    Shin DH; Cho JH
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29795018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and Characterization of a Biomimetic Totally Implantable Artificial Basilar Membrane System.
    Chung J; Jung Y; Hur S; Kim JH; Kim SJ; Kim WD; Choung YH; Oh SH
    Front Bioeng Biotechnol; 2021; 9():693849. PubMed ID: 34336805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of ossicular chain vibration at the umbo: implications for a middle ear microelectromechanical system design.
    Young DJ; Zurcher MA; Trang T; Megerian CA; Ko WH
    Ear Nose Throat J; 2010 Jan; 89(1):21-6. PubMed ID: 20155695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical evaluation of implantable hearing devices using a finite element model of human ear considering viscoelastic properties.
    Zhang J; Tian J; Ta N; Huang X; Rao Z
    Proc Inst Mech Eng H; 2016 Aug; 230(8):784-94. PubMed ID: 27276992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive model of human ear for analysis of implantable hearing devices.
    Zhang X; Gan RZ
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):3024-7. PubMed ID: 21708496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three dimensional transient multifield analysis of a piezoelectric micropump for drug delivery system for treatment of hemodynamic dysfunctions.
    Nisar A; Afzulpurkar N; Tuantranont A; Mahaisavariya B
    Cardiovasc Eng; 2008 Dec; 8(4):203-18. PubMed ID: 19030990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Longitudinal pattern of basilar membrane vibration in the sensitive cochlea.
    Ren T
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):17101-6. PubMed ID: 12461165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the middle ear anatomy on the performance of a membrane sensor in the incudostapedial joint gap.
    Koch M; Seidler H; Hellmuth A; Bornitz M; Lasurashvili N; Zahnert T
    Hear Res; 2013 Jul; 301():35-43. PubMed ID: 23246425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An implantable pressure sensing system with electromechanical interrogation scheme.
    Kim A; Powell CR; Ziaie B
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2209-17. PubMed ID: 24800754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmission of bone conducted sound - correlation between hearing perception and cochlear vibration.
    Eeg-Olofsson M; Stenfelt S; Taghavi H; Reinfeldt S; HÃ¥kansson B; Tengstrand T; Finizia C
    Hear Res; 2013 Dec; 306():11-20. PubMed ID: 24047594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Third-window vibroplasty with an active middle ear implant: assessment of physiologic responses in a model of stapes fixation in Chinchilla lanigera.
    Lupo JE; Koka K; Jenkins HA; Tollin DJ
    Otol Neurotol; 2012 Apr; 33(3):425-31. PubMed ID: 22334156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.