These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26264077)

  • 1. Non-innocent adsorption of Co-pyrphyrin on rutile(110).
    Gurdal Y; Luber S; Hutter J; Iannuzzi M
    Phys Chem Chem Phys; 2015 Sep; 17(35):22846-54. PubMed ID: 26264077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling localized photoinduced electrons in rutile-TiO2 using periodic DFT+U methodology.
    Jedidi A; Markovits A; Minot C; Bouzriba S; Abderraba M
    Langmuir; 2010 Nov; 26(21):16232-8. PubMed ID: 20572639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From porphyrins to pyrphyrins: adsorption study and metalation of a molecular catalyst on Au(111).
    Mette G; Sutter D; Gurdal Y; Schnidrig S; Probst B; Iannuzzi M; Hutter J; Alberto R; Osterwalder J
    Nanoscale; 2016 Apr; 8(15):7958-68. PubMed ID: 27006307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface.
    Chrétien S; Metiu H
    J Chem Phys; 2007 Dec; 127(24):244708. PubMed ID: 18163696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption and dissociation of NH3 on clean and hydroxylated TiO2 rutile (110) surfaces: a computational study.
    Chang JG; Chen HT; Ju SP; Chang CS; Weng MH
    J Comput Chem; 2011 Apr; 32(6):1101-12. PubMed ID: 21387336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Nernstian two-electron transfer photocatalysis at metalloporphyrin-TiO2 interfaces.
    Ardo S; Achey D; Morris AJ; Abrahamsson M; Meyer GJ
    J Am Chem Soc; 2011 Oct; 133(41):16572-80. PubMed ID: 21888402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catechol and HCl Adsorption on TiO2(110) in Vacuum and at the Water-TiO2 Interface.
    Kristoffersen HH; Shea JE; Metiu H
    J Phys Chem Lett; 2015 Jun; 6(12):2277-81. PubMed ID: 26266604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water on titanium dioxide surface: a revisiting by reactive molecular dynamics simulations.
    Huang L; Gubbins KE; Li L; Lu X
    Langmuir; 2014 Dec; 30(49):14832-40. PubMed ID: 25423593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption studies of p-aminobenzoic acid on the anatase TiO₂(101) surface.
    Thomas AG; Jackman MJ; Wagstaffe M; Radtke H; Syres K; Adell J; Lévy A; Martsinovich N
    Langmuir; 2014 Oct; 30(41):12306-14. PubMed ID: 25254628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of R-OH molecules on TiO2 surfaces at the solid-liquid interface.
    Sánchez VM; de la Llave E; Scherlis DA
    Langmuir; 2011 Mar; 27(6):2411-9. PubMed ID: 21314168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production.
    Li L; Yan J; Wang T; Zhao ZJ; Zhang J; Gong J; Guan N
    Nat Commun; 2015 Jan; 6():5881. PubMed ID: 25562287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of enhanced water adsorption at <110> step edge on rutile TiO2(110) surface.
    Hong F; Ni YH; Xu WJ; Yan Y
    J Chem Phys; 2012 Sep; 137(11):114707. PubMed ID: 22998281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of tripeptide RGD on rutile TiO(2) nanotopography surface in aqueous solution.
    Song DP; Chen MJ; Liang YC; Bai QS; Chen JX; Zheng XF
    Acta Biomater; 2010 Feb; 6(2):684-94. PubMed ID: 19643209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-shell nanostructured "black" rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping.
    Yang C; Wang Z; Lin T; Yin H; Lü X; Wan D; Xu T; Zheng C; Lin J; Huang F; Xie X; Jiang M
    J Am Chem Soc; 2013 Nov; 135(47):17831-8. PubMed ID: 24164550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATR-FTIR measurements and quantum chemical calculations concerning the adsorption and photoreaction of oxalic acid on TiO2.
    Mendive CB; Bredow T; Blesa MA; Bahnemann DW
    Phys Chem Chem Phys; 2006 Jul; 8(27):3232-47. PubMed ID: 16902716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts.
    Liu M; Qiu X; Miyauchi M; Hashimoto K
    J Am Chem Soc; 2013 Jul; 135(27):10064-72. PubMed ID: 23768256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving surface-enhanced Raman scattering properties of TiO(2) nanoparticles by metal Co doping.
    Yang L; Qin X; Gong M; Jiang X; Yang M; Li X; Li G
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():224-9. PubMed ID: 24412781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embedded cluster density functional and second-order Møller-Plesset perturbation theory study on the adsorption of N2 on the rutile (110) surface.
    Stodt D; Hättig C
    J Chem Phys; 2012 Sep; 137(11):114705. PubMed ID: 22998279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.