These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26264413)

  • 21. Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating.
    Rojaee R; Fathi M; Raeissi K
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3817-25. PubMed ID: 23910282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial ingress and
    Li LY; Han ZZ; Zeng RC; Qi WC; Zhai XF; Yang Y; Lou YT; Gu T; Xu D; Duan JZ
    Bioact Mater; 2020 Dec; 5(4):902-916. PubMed ID: 32637753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro degradation of ZM21 magnesium alloy in simulated body fluids.
    Witecka A; Bogucka A; Yamamoto A; Máthis K; Krajňák T; Jaroszewicz J; Święszkowski W
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():59-69. PubMed ID: 27157728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro investigation of biodegradable polymeric coating for corrosion resistance of Mg-6Zn-Ca alloy in simulated body fluid.
    Gaur S; Singh Raman RK; Khanna AS
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():91-101. PubMed ID: 25063097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.
    Liu B; Zheng YF
    Acta Biomater; 2011 Mar; 7(3):1407-20. PubMed ID: 21056126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation.
    Guan RG; Cipriano AF; Zhao ZY; Lock J; Tie D; Zhao T; Cui T; Liu H
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3661-9. PubMed ID: 23910262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy.
    Zomorodian A; Garcia MP; Moura e Silva T; Fernandes JC; Fernandes MH; Montemor MF
    Acta Biomater; 2013 Nov; 9(10):8660-70. PubMed ID: 23454214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved mechanical performance and delayed corrosion phenomena in biodegradable Mg-Zn-Ca alloys through Pd-alloying.
    González S; Pellicer E; Fornell J; Blanquer A; Barrios L; Ibáñez E; Solsona P; Suriñach S; Baró MD; Nogués C; Sort J
    J Mech Behav Biomed Mater; 2012 Feb; 6():53-62. PubMed ID: 22301173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys.
    Fazel Anvari-Yazdi A; Tahermanesh K; Hadavi SM; Talaei-Khozani T; Razmkhah M; Abed SM; Mohtasebi MS
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():584-97. PubMed ID: 27612751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The development of binary Mg-Ca alloys for use as biodegradable materials within bone.
    Li Z; Gu X; Lou S; Zheng Y
    Biomaterials; 2008 Apr; 29(10):1329-44. PubMed ID: 18191191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance.
    Bornapour M; Celikin M; Cerruti M; Pekguleryuz M
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():267-82. PubMed ID: 24411378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials.
    Chou DT; Hong D; Saha P; Ferrero J; Lee B; Tan Z; Dong Z; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8518-33. PubMed ID: 23811218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydroxyapatite/poly(epsilon-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility.
    Jo JH; Li Y; Kim SM; Kim HE; Koh YH
    J Biomater Appl; 2013 Nov; 28(4):617-25. PubMed ID: 23241964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A mechanistic in vitro study of the microgalvanic degradation of secondary phase particles in magnesium alloys.
    Walter R; Kannan MB
    J Biomed Mater Res A; 2015 Mar; 103(3):990-1000. PubMed ID: 24910135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative in vitro study and biomechanical testing of two different magnesium alloys.
    Weizbauer A; Modrejewski C; Behrens S; Klein H; Helmecke P; Seitz JM; Windhagen H; Möhwald K; Reifenrath J; Waizy H
    J Biomater Appl; 2014 Apr; 28(8):1264-73. PubMed ID: 24105427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg-Ca and Mg-Ca-Zn alloys for biomedical applications.
    Pan Y; He S; Wang D; Huang D; Zheng T; Wang S; Dong P; Chen C
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():85-96. PubMed ID: 25492176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioactive Ca-P coating with self-sealing structure on pure magnesium.
    Gan J; Tan L; Yang K; Hu Z; Zhang Q; Fan X; Li Y; Li W
    J Mater Sci Mater Med; 2013 Apr; 24(4):889-901. PubMed ID: 23386206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MgF2-coated porous magnesium/alumina scaffolds with improved strength, corrosion resistance, and biological performance for biomedical applications.
    Kang MH; Jang TS; Kim SW; Park HS; Song J; Kim HE; Jung KH; Jung HD
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():634-42. PubMed ID: 26952467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protective layer formation on magnesium in cell culture medium.
    Wagener V; Virtanen S
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():341-51. PubMed ID: 27040228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the biodegradability, mechanical behavior, and cytocompatibility of amorphous Mg72 Zn23 Ca5 and crystalline Mg70 Zn23 Ca5 Pd2 alloys as temporary implant materials.
    Pellicer E; González S; Blanquer A; Suriñach S; Baró MD; Barrios L; Ibáñez E; Nogués C; Sort J
    J Biomed Mater Res A; 2013 Feb; 101(2):502-17. PubMed ID: 22927340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.