These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26264422)

  • 1. Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres.
    Süßmann F; Seiffert L; Zherebtsov S; Mondes V; Stierle J; Arbeiter M; Plenge J; Rupp P; Peltz C; Kessel A; Trushin SA; Ahn B; Kim D; Graf C; Rühl E; Kling MF; Fennel T
    Nat Commun; 2015 Aug; 6():7944. PubMed ID: 26264422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition of single and double rescattering in the strong-field photoemission from dielectric nanospheres.
    Seiffert L; Süßmann F; Zherebtsov S; Rupp P; Peltz C; Rühl E; Kling MF; Fennel T
    Appl Phys B; 2016; 122(4):101. PubMed ID: 32355418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial control of recollision wave packets with attosecond precision.
    Kitzler M; Lezius M
    Phys Rev Lett; 2005 Dec; 95(25):253001. PubMed ID: 16384454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-field-driven currents in graphene.
    Higuchi T; Heide C; Ullmann K; Weber HB; Hommelhoff P
    Nature; 2017 Oct; 550(7675):224-228. PubMed ID: 28953882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring Single-Cycle Near Field in a Tunnel Junction with Carrier-Envelope Phase-Controlled Terahertz Electric Fields.
    Yoshioka K; Katayama I; Arashida Y; Ban A; Kawada Y; Konishi K; Takahashi H; Takeda J
    Nano Lett; 2018 Aug; 18(8):5198-5204. PubMed ID: 30028952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field-driven photoemission from nanostructures quenches the quiver motion.
    Herink G; Solli DR; Gulde M; Ropers C
    Nature; 2012 Mar; 483(7388):190-3. PubMed ID: 22398557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoplasmonic electron acceleration by attosecond-controlled forward rescattering in silver clusters.
    Passig J; Zherebtsov S; Irsig R; Arbeiter M; Peltz C; Göde S; Skruszewicz S; Meiwes-Broer KH; Tiggesbäumker J; Kling MF; Fennel T
    Nat Commun; 2017 Oct; 8(1):1181. PubMed ID: 29081493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme nonlinear strong-field photoemission from carbon nanotubes.
    Li C; Chen K; Guan M; Wang X; Zhou X; Zhai F; Dai J; Li Z; Sun Z; Meng S; Liu K; Dai Q
    Nat Commun; 2019 Oct; 10(1):4891. PubMed ID: 31653837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong field acceleration and steering of ultrafast electron pulses from a sharp metallic nanotip.
    Park DJ; Piglosiewicz B; Schmidt S; Kollmann H; Mascheck M; Lienau C
    Phys Rev Lett; 2012 Dec; 109(24):244803. PubMed ID: 23368330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attosecond control of electrons emitted from a nanoscale metal tip.
    Krüger M; Schenk M; Hommelhoff P
    Nature; 2011 Jul; 475(7354):78-81. PubMed ID: 21734706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a 10 kHz high harmonic source up to 140 eV photon energy for ultrafast time-, angle-, and phase-resolved photoelectron emission spectroscopy on solid targets.
    Schmidt J; Guggenmos A; Chew SH; Gliserin A; Högner M; Kling MF; Zou J; Späth C; Kleineberg U
    Rev Sci Instrum; 2017 Aug; 88(8):083105. PubMed ID: 28863646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-Optical Scheme for Generation of Isolated Attosecond Electron Pulses.
    Kozák M
    Phys Rev Lett; 2019 Nov; 123(20):203202. PubMed ID: 31809099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attosecond control of electronic processes by intense light fields.
    Baltuska A; Udem T; Uiberacker M; Hentschel M; Goulielmakis E; Gohle Ch; Holzwarth R; Yakovlev VS; Scrinzi A; Hänsch TW; Krausz F
    Nature; 2003 Feb; 421(6923):611-5. PubMed ID: 12571590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy.
    Ramasesha K; Leone SR; Neumark DM
    Annu Rev Phys Chem; 2016 May; 67():41-63. PubMed ID: 26980312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-cycle dynamics in relativistic nanoplasma acceleration.
    Cardenas DE; Ostermayr TM; Di Lucchio L; Hofmann L; Kling MF; Gibbon P; Schreiber J; Veisz L
    Sci Rep; 2019 May; 9(1):7321. PubMed ID: 31086214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct XUV probing of attosecond electron recollision.
    Smirnova O; Patchkovskii S; Spanner M
    Phys Rev Lett; 2007 Mar; 98(12):123001. PubMed ID: 17501117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical attosecond pulses and tracking the nonlinear response of bound electrons.
    Hassan MT; Luu TT; Moulet A; Raskazovskaya O; Zhokhov P; Garg M; Karpowicz N; Zheltikov AM; Pervak V; Krausz F; Goulielmakis E
    Nature; 2016 Feb; 530(7588):66-70. PubMed ID: 26842055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interferometric time- and energy-resolved photoemission electron microscopy for few-femtosecond nanoplasmonic dynamics.
    Gliserin A; Chew SH; Choi S; Kim K; Hallinan DT; Oh JW; Kim S; Kim DE
    Rev Sci Instrum; 2019 Sep; 90(9):093904. PubMed ID: 31575236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong-Field Resonant Dynamics in Semiconductors.
    Wismer MS; Kruchinin SY; Ciappina M; Stockman MI; Yakovlev VS
    Phys Rev Lett; 2016 May; 116(19):197401. PubMed ID: 27232043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracing attosecond electron emission from a nanometric metal tip.
    Dienstbier P; Seiffert L; Paschen T; Liehl A; Leitenstorfer A; Fennel T; Hommelhoff P
    Nature; 2023 Apr; 616(7958):702-706. PubMed ID: 37100942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.