These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 26264509)

  • 1. Nanomechanics of RDX Single Crystals by Force-Displacement Measurements and Molecular Dynamics Simulations.
    Weingarten NS; Sausa RC
    J Phys Chem A; 2015 Sep; 119(35):9338-51. PubMed ID: 26264509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations of the intermolecular forces between RDX and polyethylene by force-distance spectroscopy and molecular dynamics simulations.
    Taylor DE; Strawhecker KE; Shanholtz ER; Sorescu DC; Sausa RC
    J Phys Chem A; 2014 Jul; 118(27):5083-97. PubMed ID: 24922563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase diagram of hexahydro-1,3,5-trinitro-1,3,5-triazine crystals at high pressures and temperatures.
    Dreger ZA; Gupta YM
    J Phys Chem A; 2010 Aug; 114(31):8099-105. PubMed ID: 20684582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bottom-up coarse-grain modeling of plasticity and nanoscale shear bands in α-RDX.
    Izvekov S; Rice BM
    J Chem Phys; 2021 Aug; 155(6):064503. PubMed ID: 34391357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shock wave-induced phase transition in RDX single crystals.
    Patterson JE; Dreger ZA; Gupta YM
    J Phys Chem B; 2007 Sep; 111(37):10897-904. PubMed ID: 17718475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonreactive molecular dynamics force field for crystalline hexahydro-1,3,5-trinitro-1,3,5 triazine.
    Boyd S; Gravelle M; Politzer P
    J Chem Phys; 2006 Mar; 124(10):104508. PubMed ID: 16542089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX) using a combined Sorescu-Rice-Thompson AMBER force field.
    Agrawal PM; Rice BM; Zheng L; Thompson DL
    J Phys Chem B; 2006 Dec; 110(51):26185-8. PubMed ID: 17181274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of high-pressure phases in RDX.
    Munday LB; Chung PW; Rice BM; Solares SD
    J Phys Chem B; 2011 Apr; 115(15):4378-86. PubMed ID: 21434619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of friction on indenter force and pile-up in numerical simulations of bone nanoindentation.
    Adam CJ; Swain MV
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1554-8. PubMed ID: 21783165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical characterization of sclerotic occlusal dentin by nanoindentation and nanoscratch.
    Martín N; García A; Vera V; Garrido MA; Rodríguez J
    Am J Dent; 2010 Apr; 23(2):108-12. PubMed ID: 20608302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-pressure vibrational spectroscopy of energetic materials: hexahydro-1,3,5-trinitro-1,3,5-triazine.
    Ciezak JA; Jenkins TA; Liu Z; Hemley RJ
    J Phys Chem A; 2007 Jan; 111(1):59-63. PubMed ID: 17201388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of mechanical properties of insulin crystals by atomic force microscopy.
    Guo S; Akhremitchev BB
    Langmuir; 2008 Feb; 24(3):880-7. PubMed ID: 18163652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomechanical and nanotribological properties of plasma nanotextured superhydrophilic and superhydrophobic polymeric surfaces.
    Skarmoutsou A; Charitidis CA; Gnanappa AK; Tserepi A; Gogolides E
    Nanotechnology; 2012 Dec; 23(50):505711. PubMed ID: 23196721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM.
    Gao G; Cannara RJ; Carpick RW; Harrison JA
    Langmuir; 2007 May; 23(10):5394-405. PubMed ID: 17407330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ReaxFF-lg: correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials.
    Liu L; Liu Y; Zybin SV; Sun H; Goddard WA
    J Phys Chem A; 2011 Oct; 115(40):11016-22. PubMed ID: 21888351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics study of the structures and properties of RDX/GAP propellant.
    Li M; Li F; Shen R; Guo X
    J Hazard Mater; 2011 Feb; 186(2-3):2031-6. PubMed ID: 21237558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contact between traps and surfaces during contact sampling of explosives in security settings.
    Chaffee-Cipich MN; Hoss DJ; Sweat ML; Beaudoin SP
    Forensic Sci Int; 2016 Mar; 260():85-94. PubMed ID: 26836243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface softening in metal-ceramic sliding contacts: an experimental and numerical investigation.
    Stoyanov P; Merz R; Romero PA; Wählisch FC; Abad OT; Gralla R; Stemmer P; Kopnarski M; Moseler M; Bennewitz R; Dienwiebel M
    ACS Nano; 2015 Feb; 9(2):1478-91. PubMed ID: 25530212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructure and nanomechanical properties of cementum dentin junction.
    Ho SP; Balooch M; Goodis HE; Marshall GW; Marshall SJ
    J Biomed Mater Res A; 2004 Feb; 68(2):343-51. PubMed ID: 14704976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives.
    Zhu W; Xiao J; Zhu W; Xiao H
    J Hazard Mater; 2009 May; 164(2-3):1082-8. PubMed ID: 18938030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.