These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26264669)

  • 1. Identification of large-scale genomic variation in cancer genomes using in silico reference models.
    Killcoyne S; Del Sol A
    Nucleic Acids Res; 2016 Jan; 44(1):e5. PubMed ID: 26264669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing and interpreting genetic variation from personal genome sequencing.
    Johansson AC; Feuk L
    Methods Mol Biol; 2012; 838():343-67. PubMed ID: 22228021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding genome structural variations.
    Abyzov A; Li S; Gerstein MB
    Oncotarget; 2016 Feb; 7(7):7370-1. PubMed ID: 26657727
    [No Abstract]   [Full Text] [Related]  

  • 4. Reconstructing the history of large-scale genomic changes: biological questions and computational challenges.
    Ma J
    J Comput Biol; 2011 Jul; 18(7):879-93. PubMed ID: 21563973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localizing unmapped sequences with families to validate the Telomere-to-Telomere assembly and identify new hotspots for genetic diversity.
    Chrisman B; He C; Jung JY; Stockham N; Paskov K; Washington P; Petereit J; Wall DP
    Genome Res; 2023 Oct; 33(10):1734-1746. PubMed ID: 37879860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural variation analysis with strobe reads.
    Ritz A; Bashir A; Raphael BJ
    Bioinformatics; 2010 May; 26(10):1291-8. PubMed ID: 20378554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of large rearrangements in cancer genomes with barcode linked reads.
    Xia LC; Bell JM; Wood-Bouwens C; Chen JJ; Zhang NR; Ji HP
    Nucleic Acids Res; 2018 Feb; 46(4):e19. PubMed ID: 29186506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Perfect Match Genomic Landscape Provides a Unified Framework for the Precise Detection of Variation in Natural and Synthetic Haploid Genomes.
    Palacios-Flores K; García-Sotelo J; Castillo A; Uribe C; Aguilar L; Morales L; Gómez-Romero L; Reyes J; Garciarubio A; Boege M; Dávila G
    Genetics; 2018 Apr; 208(4):1631-1641. PubMed ID: 29367403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical mapping reveals a higher level of genomic architecture of chained fusions in cancer.
    Chan EKF; Cameron DL; Petersen DC; Lyons RJ; Baldi BF; Papenfuss AT; Thomas DM; Hayes VM
    Genome Res; 2018 May; 28(5):726-738. PubMed ID: 29618486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Jitterbug: somatic and germline transposon insertion detection at single-nucleotide resolution.
    Hénaff E; Zapata L; Casacuberta JM; Ossowski S
    BMC Genomics; 2015 Oct; 16():768. PubMed ID: 26459856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Druggability of human disease genes.
    Sakharkar MK; Sakharkar KR; Pervaiz S
    Int J Biochem Cell Biol; 2007; 39(6):1156-64. PubMed ID: 17446117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A thesaurus of genetic variation for interrogation of repetitive genomic regions.
    Kerzendorfer C; Konopka T; Nijman SM
    Nucleic Acids Res; 2015 May; 43(10):e68. PubMed ID: 25820428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamics of cancer chromosomes and genomes.
    Ye CJ; Liu G; Bremer SW; Heng HH
    Cytogenet Genome Res; 2007; 118(2-4):237-46. PubMed ID: 18000376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico analysis of genomic data for construction of nuclear receptor network.
    Park YY; Lee JS
    Methods Mol Biol; 2014; 1204():71-81. PubMed ID: 25182762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Churchill: an ultra-fast, deterministic, highly scalable and balanced parallelization strategy for the discovery of human genetic variation in clinical and population-scale genomics.
    Kelly BJ; Fitch JR; Hu Y; Corsmeier DJ; Zhong H; Wetzel AN; Nordquist RD; Newsom DL; White P
    Genome Biol; 2015 Jan; 16(1):6. PubMed ID: 25600152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome simulation approaches for synthesizing in silico datasets for human genomics.
    Ritchie MD; Bush WS
    Adv Genet; 2010; 72():1-24. PubMed ID: 21029846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large scale copy number variation (CNV) at 14q12 is associated with the presence of genomic abnormalities in neoplasia.
    Braude I; Vukovic B; Prasad M; Marrano P; Turley S; Barber D; Zielenska M; Squire JA
    BMC Genomics; 2006 Jun; 7():138. PubMed ID: 16756668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of structural variants involving repetitive regions in the reference genome.
    Lee H; Popodi E; Foster PL; Tang H
    J Comput Biol; 2014 Mar; 21(3):219-33. PubMed ID: 24552580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome signatures of colon carcinoma cell lines.
    Kleivi K; Teixeira MR; Eknaes M; Diep CB; Jakobsen KS; Hamelin R; Lothe RA
    Cancer Genet Cytogenet; 2004 Dec; 155(2):119-31. PubMed ID: 15571797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FIGG: simulating populations of whole genome sequences for heterogeneous data analyses.
    Killcoyne S; del Sol A
    BMC Bioinformatics; 2014 May; 15():149. PubMed ID: 24885193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.