These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26264709)

  • 1. Therapy for dominant inherited diseases by allele-specific RNA interference: successes and pitfalls.
    Trochet D; Prudhon B; Vassilopoulos S; Bitoun M
    Curr Gene Ther; 2015; 15(5):503-10. PubMed ID: 26264709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis.
    Ding H; Schwarz DS; Keene A; Affar el B; Fenton L; Xia X; Shi Y; Zamore PD; Xu Z
    Aging Cell; 2003 Aug; 2(4):209-17. PubMed ID: 12934714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic siRNAs for dominant genetic skin disorders including pachyonychia congenita.
    Leachman SA; Hickerson RP; Hull PR; Smith FJ; Milstone LM; Lane EB; Bale SJ; Roop DR; McLean WH; Kaspar RL
    J Dermatol Sci; 2008 Sep; 51(3):151-7. PubMed ID: 18495438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit in vivo.
    Xia X; Zhou H; Huang Y; Xu Z
    Neurobiol Dis; 2006 Sep; 23(3):578-86. PubMed ID: 16857362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic interference: a step closer for pachyonychia congenita?
    Rugg EL
    J Invest Dermatol; 2008 Jan; 128(1):7-8. PubMed ID: 18071332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-nucleotide-specific siRNA targeting in a dominant-negative skin model.
    Hickerson RP; Smith FJ; Reeves RE; Contag CH; Leake D; Leachman SA; Milstone LM; McLean WH; Kaspar RL
    J Invest Dermatol; 2008 Mar; 128(3):594-605. PubMed ID: 17914454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder.
    Leachman SA; Hickerson RP; Schwartz ME; Bullough EE; Hutcherson SL; Boucher KM; Hansen CD; Eliason MJ; Srivatsa GS; Kornbrust DJ; Smith FJ; McLean WI; Milstone LM; Kaspar RL
    Mol Ther; 2010 Feb; 18(2):442-6. PubMed ID: 19935778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of quantitative molecular clinical end points for siRNA clinical trials.
    Hickerson RP; Leachman SA; Pho LN; Gonzalez-Gonzalez E; Smith FJ; McLean WH; Contag CH; Leake D; Milstone LM; Kaspar RL
    J Invest Dermatol; 2011 May; 131(5):1029-36. PubMed ID: 21191405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular medicine for the brain: silencing of disease genes with RNA interference.
    Davidson BL; Paulson HL
    Lancet Neurol; 2004 Mar; 3(3):145-9. PubMed ID: 14980529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA interference in neuroscience: progress and challenges.
    Miller VM; Paulson HL; Gonzalez-Alegre P
    Cell Mol Neurobiol; 2005 Dec; 25(8):1195-207. PubMed ID: 16388332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel measurement of allele discrimination for assessment of allele-specific silencing by RNA interference.
    Takahashi M; Hohjoh H
    Mol Biol Rep; 2014 Nov; 41(11):7115-20. PubMed ID: 25037272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allele-specific silencing of dominant disease genes.
    Miller VM; Xia H; Marrs GL; Gouvion CM; Lee G; Davidson BL; Paulson HL
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):7195-200. PubMed ID: 12782788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SiRNA-mediated selective inhibition of mutant keratin mRNAs responsible for the skin disorder pachyonychia congenita.
    Hickerson RP; Smith FJ; McLean WH; Landthaler M; Leube RE; Kaspar RL
    Ann N Y Acad Sci; 2006 Oct; 1082():56-61. PubMed ID: 17145926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small RNA: can RNA interference be exploited for therapy?
    Wall NR; Shi Y
    Lancet; 2003 Oct; 362(9393):1401-3. PubMed ID: 14585643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allele-specific RNA interference for neurological disease.
    Rodriguez-Lebron E; Paulson HL
    Gene Ther; 2006 Mar; 13(6):576-81. PubMed ID: 16355113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA interference: new mechanisms for targeted treatment?
    Woessmann W; Damm-Welk C; Fuchs U; Borkhardt A
    Rev Clin Exp Hematol; 2003 Sep; 7(3):270-91. PubMed ID: 15024970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNAi: gene-silencing in therapeutic intervention.
    Shuey DJ; McCallus DE; Giordano T
    Drug Discov Today; 2002 Oct; 7(20):1040-6. PubMed ID: 12546893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo application of an RNAi strategy for the selective suppression of a mutant allele.
    Kubodera T; Yamada H; Anzai M; Ohira S; Yokota S; Hirai Y; Mochizuki H; Shimada T; Mitani T; Mizusawa H; Yokota T
    Hum Gene Ther; 2011 Jan; 22(1):27-34. PubMed ID: 20649474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric RNA duplexes mediate RNA interference in mammalian cells.
    Sun X; Rogoff HA; Li CJ
    Nat Biotechnol; 2008 Dec; 26(12):1379-82. PubMed ID: 19029911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allele-specific silencing of a pathogenic mutant acetylcholine receptor subunit by RNA interference.
    Abdelgany A; Wood M; Beeson D
    Hum Mol Genet; 2003 Oct; 12(20):2637-44. PubMed ID: 12928480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.