These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Enhanced Power Conversion Efficiency of Graphene/Silicon Heterojunction Solar Cells Through NiO Induced Doping. Kuru C; Yavuz S; Kargar A; Choi D; Choi C; Rustomji C; Jin S; Bandaru PR J Nanosci Nanotechnol; 2016 Jan; 16(1):1190-3. PubMed ID: 27398585 [TBL] [Abstract][Full Text] [Related]
43. Self-dispersible graphene quantum dots in ethylene glycol for direct absorption-based medium-temperature solar-thermal harvesting. Lin R; Zhang J; Shu L; Zhu J; Fu B; Song C; Shang W; Tao P; Deng T RSC Adv; 2020 Dec; 10(73):45028-45036. PubMed ID: 35516255 [TBL] [Abstract][Full Text] [Related]
44. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell. Petterson MK; Lemaitre MG; Shen Y; Wadhwa P; Hou J; Vasilyeva SV; Kravchenko II; Rinzler AG ACS Appl Mater Interfaces; 2015 Sep; 7(38):21182-7. PubMed ID: 26352052 [TBL] [Abstract][Full Text] [Related]
45. Aggregation-Induced Enhanced Red Emission Graphene Quantum Dots for Integrated Fabrication of Luminescent Solar Concentrators. Li J; Zhao H; Zhao X; Gong X Nano Lett; 2024 Sep; 24(37):11722-11729. PubMed ID: 39248378 [TBL] [Abstract][Full Text] [Related]
46. Graphene quantum dots as the hole transport layer material for high-performance organic solar cells. Li M; Ni W; Kan B; Wan X; Zhang L; Zhang Q; Long G; Zuo Y; Chen Y Phys Chem Chem Phys; 2013 Nov; 15(43):18973-8. PubMed ID: 24097209 [TBL] [Abstract][Full Text] [Related]
47. Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting. Sun B; Ouellette O; García de Arquer FP; Voznyy O; Kim Y; Wei M; Proppe AH; Saidaminov MI; Xu J; Liu M; Li P; Fan JZ; Jo JW; Tan H; Tan F; Hoogland S; Lu ZH; Kelley SO; Sargent EH Nat Commun; 2018 Oct; 9(1):4003. PubMed ID: 30275457 [TBL] [Abstract][Full Text] [Related]
48. Facile synthesis of analogous graphene quantum dots with sp(2) hybridized carbon atom dominant structures and their photovoltaic application. Huang Z; Shen Y; Li Y; Zheng W; Xue Y; Qin C; Zhang B; Hao J; Feng W Nanoscale; 2014 Nov; 6(21):13043-52. PubMed ID: 25247467 [TBL] [Abstract][Full Text] [Related]
49. Antireflection properties of graphene layers on planar and textured silicon surfaces. Kumar R; Sharma AK; Bhatnagar M; Mehta BR; Rath S Nanotechnology; 2013 Apr; 24(16):165402. PubMed ID: 23535282 [TBL] [Abstract][Full Text] [Related]
50. Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. Zhu Z; Ma J; Wang Z; Mu C; Fan Z; Du L; Bai Y; Fan L; Yan H; Phillips DL; Yang S J Am Chem Soc; 2014 Mar; 136(10):3760-3. PubMed ID: 24558950 [TBL] [Abstract][Full Text] [Related]
51. The role of MoS2 as an interfacial layer in graphene/silicon solar cells. Jiao K; Duan C; Wu X; Chen J; Wang Y; Chen Y Phys Chem Chem Phys; 2015 Mar; 17(12):8182-6. PubMed ID: 25728709 [TBL] [Abstract][Full Text] [Related]
52. Enhanced conversion efficiency in Si solar cells employing photoluminescent down-shifting CdSe/CdS core/shell quantum dots. Lopez-Delgado R; Zhou Y; Zazueta-Raynaud A; Zhao H; Pelayo JE; Vomiero A; Álvarez-Ramos ME; Rosei F; Ayon A Sci Rep; 2017 Oct; 7(1):14104. PubMed ID: 29074855 [TBL] [Abstract][Full Text] [Related]
53. Si microwire solar cells: improved efficiency with a conformal SiO2 layer. Seo K; Yu YJ; Duane P; Zhu W; Park H; Wober M; Crozier KB ACS Nano; 2013 Jun; 7(6):5539-45. PubMed ID: 23663070 [TBL] [Abstract][Full Text] [Related]
54. Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers. Chen HC; Lin CC; Han HW; Tsai YL; Chang CH; Wang HW; Tsai MA; Kuo HC; Yu P Opt Express; 2011 Sep; 19 Suppl 5():A1141-7. PubMed ID: 21935257 [TBL] [Abstract][Full Text] [Related]
55. Engineering of luminescent graphene quantum dot-gold (GQD-Au) hybrid nanoparticles for functional applications. Wadhwa S; John AT; Mathur A; Khanuja M; Bhattacharya G; Roy SS; Ray SC MethodsX; 2020; 7():100963. PubMed ID: 32637335 [TBL] [Abstract][Full Text] [Related]
56. Density functional theory investigation of photoelectric conversion in graphene quantum dot/Ir(III) complex nanocomposites: the influence of π-conjugation in cyclometalating ligands. Cui P; Wu Q Photochem Photobiol Sci; 2023 Nov; 22(11):2621-2634. PubMed ID: 37718379 [TBL] [Abstract][Full Text] [Related]
57. Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell. Kiani A; Venkatakrishnan K; Tan B Opt Express; 2014 Jan; 22 Suppl 1():A120-31. PubMed ID: 24921988 [TBL] [Abstract][Full Text] [Related]
58. All-lignin converted graphene quantum dot/graphene nanosheet hetero-junction for high-rate and boosted specific capacitance supercapacitors. Ding Z; Mei X; Wang X Nanoscale Adv; 2021 May; 3(9):2529-2537. PubMed ID: 36134161 [TBL] [Abstract][Full Text] [Related]
59. Enhanced Environmental Stability Coupled with a 12.5% Power Conversion Efficiency in an Aluminum Oxide-Encapsulated n-Graphene/p-Silicon Solar Cell. Yavuz S; Loran EM; Sarkar N; Fenning DP; Bandaru PR ACS Appl Mater Interfaces; 2018 Oct; 10(43):37181-37187. PubMed ID: 30280565 [TBL] [Abstract][Full Text] [Related]
60. Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells. Tavakoli MM; Aashuri H; Simchi A; Fan Z Phys Chem Chem Phys; 2015 Oct; 17(37):24412-9. PubMed ID: 26339693 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]