These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26264777)

  • 1. Magnetic field dependence of spatial frequency encoding NMR as probed on an oligosaccharide.
    Pitoux D; Hu Z; Plainchont B; Merlet D; Farjon J; Bonnaffé D; Giraud N
    Magn Reson Chem; 2015 Oct; 53(10):836-44. PubMed ID: 26264777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining pure shift and J-edited spectroscopies: A strategy for extracting chemical shifts and scalar couplings from highly crowded proton spectra of oligomeric saccharides.
    Pitoux D; Hu Z; Plainchont B; Merlet D; Farjon J; Bonnaffé D; Giraud N
    Magn Reson Chem; 2018 Oct; 56(10):954-962. PubMed ID: 29396911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time homonuclear broadband and band-selective decoupled pure-shift ROESY.
    Kakita VM; Bharatam J
    Magn Reson Chem; 2014 Jul; 52(7):389-94. PubMed ID: 24777641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1D NMR Homodecoupled (1)H Spectra with Scalar Coupling Constants from 2D NemoZS-DIAG Experiments.
    Cotte A; Jeannerat D
    Angew Chem Int Ed Engl; 2015 May; 54(20):6016-8. PubMed ID: 25808571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A toolbox of HSQC experiments for small molecules at high 13C-enrichment. Artifact-free, fully 13C-homodecoupled and JCC-encoding pulse sequences.
    Foroozandeh M; Giraudeau P; Jeannerat D
    Magn Reson Chem; 2013 Dec; 51(12):808-14. PubMed ID: 24123384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving high resolution and optimizing sensitivity in spatial frequency encoding NMR spectroscopy: from theory to practice.
    Plainchont B; Pitoux D; Hamdoun G; Ouvrard JM; Merlet D; Farjon J; Giraud N
    Phys Chem Chem Phys; 2016 Aug; 18(33):22827-39. PubMed ID: 27188323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid-state NMR and scalar couplings in microtesla magnetic fields.
    McDermott R; Trabesinger AH; Muck M; Hahn EL; Pines A; Clarke J
    Science; 2002 Mar; 295(5563):2247-9. PubMed ID: 11910105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppressing one-bond homonuclear 13C,13C scalar couplings in the J-HMBC NMR experiment: application to 13C site-specifically labeled oligosaccharides.
    Pendrill R; Sørensen OW; Widmalm G
    Magn Reson Chem; 2014 Mar; 52(3):82-6. PubMed ID: 24395678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural-abundance solid-state 2H NMR spectroscopy at high magnetic field.
    Aliev AE; Mann SE; Iuga D; Hughes CE; Harris KD
    J Phys Chem A; 2011 Jun; 115(22):5568-78. PubMed ID: 21563791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband 1H homodecoupled NMR experiments: recent developments, methods and applications.
    Castañar L; Parella T
    Magn Reson Chem; 2015 Jun; 53(6):399-426. PubMed ID: 25899911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR in rotating magnetic fields: magic-angle field spinning.
    Sakellariou D; Meriles CA; Martin RW; Pines A
    Magn Reson Imaging; 2005 Feb; 23(2):295-9. PubMed ID: 15833630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a (1)H delta-resolved 2D NMR experiment to the visualization of enantiomers in chiral environment, using sample spatial encoding and selective echoes.
    Giraud N; Joos M; Courtieu J; Merlet D
    Magn Reson Chem; 2009 Apr; 47(4):300-6. PubMed ID: 19152377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state Hadamard NMR spectroscopy: simultaneous measurements of multiple selective homonuclear scalar couplings.
    Kakita VM; Kupče E; Bharatam J
    J Magn Reson; 2015 Feb; 251():8-12. PubMed ID: 25554944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. J-edited pure shift NMR for the facile measurement of (n)J(HH) for specific protons.
    Chaudhari SR; Suryaprakash N
    Chemphyschem; 2015 Apr; 16(5):1079-82. PubMed ID: 25641520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical shift correlations from hyperpolarized NMR by off-resonance decoupling.
    Bowen S; Zeng H; Hilty C
    Anal Chem; 2008 Aug; 80(15):5794-8. PubMed ID: 18605696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations.
    Zhang Z; Huang Y; Smith PE; Wang K; Cai S; Chen Z
    J Magn Reson; 2014 May; 242():49-56. PubMed ID: 24607822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution zero-field NMR J-spectroscopy of aromatic compounds.
    Blanchard JW; Ledbetter MP; Theis T; Butler MC; Budker D; Pines A
    J Am Chem Soc; 2013 Mar; 135(9):3607-12. PubMed ID: 23391037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defeating radiation damping and magnetic field inhomogeneity with spatially encoded noise.
    Michal CA
    Chemphyschem; 2010 Nov; 11(16):3447-55. PubMed ID: 20928881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial encoding and the acquisition of high-resolution NMR spectra in inhomogeneous magnetic fields.
    Shapira B; Frydman L
    J Am Chem Soc; 2004 Jun; 126(23):7184-5. PubMed ID: 15186149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical detection of NMR J-spectra at zero magnetic field.
    Ledbetter MP; Crawford CW; Pines A; Wemmer DE; Knappe S; Kitching J; Budker D
    J Magn Reson; 2009 Jul; 199(1):25-9. PubMed ID: 19406678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.