BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26264811)

  • 61. Molecular mechanisms and metabolic engineering of glutamate overproduction in Corynebacterium glutamicum.
    Hirasawa T; Kim J; Shirai T; Furusawa C; Shimizu H
    Subcell Biochem; 2012; 64():261-81. PubMed ID: 23080255
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Genomics and transcriptomics-guided metabolic engineering Corynebacterium glutamicum for l-arginine production.
    Zhao Z; Cai M; Liu Y; Hu M; Yang F; Zhu R; Xu M; Rao Z
    Bioresour Technol; 2022 Nov; 364():128054. PubMed ID: 36184013
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Pathway analysis and metabolic engineering in Corynebacterium glutamicum.
    Sahm H; Eggeling L; de Graaf AA
    Biol Chem; 2000; 381(9-10):899-910. PubMed ID: 11076021
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Inhibition of Corynebacterium ulcerans toxin production by Tween 80.
    Abrehem K; Zamiri I
    J Med Microbiol; 1980 Nov; 13(4):581-4. PubMed ID: 7431375
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Display of alpha-amylase on the surface of Corynebacterium glutamicum cells by using NCgl1221 as the anchoring protein, and production of glutamate from starch.
    Yao W; Chu C; Deng X; Zhang Y; Liu M; Zheng P; Sun Z
    Arch Microbiol; 2009 Oct; 191(10):751-9. PubMed ID: 19727672
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Kinetic study and modelling on L-arginine fermentation.
    Gong J; Ding J; Huang H; Chen Q
    Chin J Biotechnol; 1993; 9(1):9-18. PubMed ID: 8155842
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Expression of feedback-resistant aspartate kinase gene in Corynebacterium crenatum].
    Zhao Z; Liu YJ; Wang Y; Zhang YZ; Ding JY
    Wei Sheng Wu Xue Bao; 2005 Aug; 45(4):530-3. PubMed ID: 16245864
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Cloning and sequence analysis of aspartokinase genes from Corynebacterium crenatum].
    Liu Y; Zhang Y; Wang J; Wang Y; Yu Z; Ding J
    Wei Sheng Wu Xue Bao; 2002 Aug; 42(4):395-9. PubMed ID: 12557542
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production by Corynebacterium glutamicum.
    Kim J; Fukuda H; Hirasawa T; Nagahisa K; Nagai K; Wachi M; Shimizu H
    Appl Microbiol Biotechnol; 2010 Apr; 86(3):911-20. PubMed ID: 19956942
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Phage resistance of Corynebacterium crenatum conferred by the restriction and modification system cglI].
    Hu Y; Li T; Yang Z; Zhang B; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2008 May; 24(5):760-5. PubMed ID: 18724694
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identification and characterization of a novel 2,3-butanediol dehydrogenase/acetoin reductase from Corynebacterium crenatum SYPA5-5.
    Zhao X; Zhang X; Rao Z; Bao T; Li X; Xu M; Yang T; Yang S
    Lett Appl Microbiol; 2015 Dec; 61(6):573-9. PubMed ID: 26393961
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Expression and localization of the Corynebacterium glutamicum NCgl1221 protein encoding an L-glutamic acid exporter.
    Yao W; Deng X; Liu M; Zheng P; Sun Z; Zhang Y
    Microbiol Res; 2009; 164(6):680-7. PubMed ID: 19233628
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Enhanced glutamic acid production by a H+-ATPase-defective mutant of Corynebacterium glutamicum.
    Aoki R; Wada M; Takesue N; Tanaka K; Yokota A
    Biosci Biotechnol Biochem; 2005 Aug; 69(8):1466-72. PubMed ID: 16116273
    [TBL] [Abstract][Full Text] [Related]  

  • 74. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway.
    Ramzi AB; Hyeon JE; Kim SW; Park C; Han SO
    Enzyme Microb Technol; 2015 Dec; 81():1-7. PubMed ID: 26453466
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway.
    Xu J; Han M; Zhang J; Guo Y; Zhang W
    Amino Acids; 2014 Sep; 46(9):2165-75. PubMed ID: 24879631
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum.
    Liu Q; Ouyang SP; Kim J; Chen GQ
    J Biotechnol; 2007 Nov; 132(3):273-9. PubMed ID: 17555841
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Expression of genes of lipid synthesis and altered lipid composition modulates L-glutamate efflux of Corynebacterium glutamicum.
    Nampoothiri KM; Hoischen C; Bathe B; Möckel B; Pfefferle W; Krumbach K; Sahm H; Eggeling L
    Appl Microbiol Biotechnol; 2002 Jan; 58(1):89-96. PubMed ID: 11831479
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Deletion of odhA or pyc improves production of γ-aminobutyric acid and its precursor L-glutamate in recombinant Corynebacterium glutamicum.
    Wang N; Ni Y; Shi F
    Biotechnol Lett; 2015 Jul; 37(7):1473-81. PubMed ID: 25801673
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Screening of dissolved oxygen induced promoters in Corynebacterium crenatum and functional verification].
    Zhang B; Xu M; Rao Z; Xu Z
    Wei Sheng Wu Xue Bao; 2013 Sep; 53(9):933-42. PubMed ID: 24377245
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase.
    Marx A; Eikmanns BJ; Sahm H; de Graaf AA; Eggeling L
    Metab Eng; 1999 Jan; 1(1):35-48. PubMed ID: 10935753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.