These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26264842)

  • 1. A new small molecule inhibitor of soluble guanylate cyclase.
    Mota F; Gane P; Hampden-Smith K; Allerston CK; Garthwaite J; Selwood DL
    Bioorg Med Chem; 2015 Sep; 23(17):5303-10. PubMed ID: 26264842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacology of the nitric oxide receptor, soluble guanylyl cyclase, in cerebellar cells.
    Bellamy TC; Garthwaite J
    Br J Pharmacol; 2002 May; 136(1):95-103. PubMed ID: 11976273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fibrate gemfibrozil is a NO- and haem-independent activator of soluble guanylyl cyclase: in vitro studies.
    Sharina IG; Sobolevsky M; Papakyriakou A; Rukoyatkina N; Spyroulias GA; Gambaryan S; Martin E
    Br J Pharmacol; 2015 May; 172(9):2316-29. PubMed ID: 25536881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct molecular requirements for activation or stabilization of soluble guanylyl cyclase upon haem oxidation-induced degradation.
    Hoffmann LS; Schmidt PM; Keim Y; Schaefer S; Schmidt HH; Stasch JP
    Br J Pharmacol; 2009 Jul; 157(5):781-95. PubMed ID: 19466990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of relaxant activity of the nitric oxide-independent soluble guanylyl cyclase stimulator BAY 41-2272 in rat tracheal smooth muscle.
    Toque HA; Mónica FZ; Morganti RP; De Nucci G; Antunes E
    Eur J Pharmacol; 2010 Oct; 645(1-3):158-64. PubMed ID: 20670622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the rescue of oxidized soluble guanylate cyclase by the activator cinaciguat.
    Surmeli NB; Marletta MA
    Chembiochem; 2012 May; 13(7):977-81. PubMed ID: 22474005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance using the catalytic domain of soluble guanylate cyclase allows the detection of enzyme activators.
    Mota F; Allerston CK; Hampden-Smith K; Garthwaite J; Selwood DL
    Bioorg Med Chem Lett; 2014 Feb; 24(4):1075-9. PubMed ID: 24480469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence dequenching makes haem-free soluble guanylate cyclase detectable in living cells.
    Hoffmann LS; Schmidt PM; Keim Y; Hoffmann C; Schmidt HH; Stasch JP
    PLoS One; 2011; 6(8):e23596. PubMed ID: 21858179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one inhibits neurite outgrowth and causes neurite retraction in PC12 cells independently of soluble guanylyl cyclase.
    Lee HG; Kim SY; Kim du S; Seo SR; Lee SI; Shin DM; De Smet P; Seo JT
    J Neurosci Res; 2009 Jan; 87(1):269-77. PubMed ID: 18711750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide regulation of soluble guanylate cyclase substrate specificity.
    Derbyshire ER; Fernhoff NB; Deng S; Marletta MA
    Biochemistry; 2009 Aug; 48(31):7519-24. PubMed ID: 19527054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of soluble guanylate cyclase alpha(1) and alpha(2), and SK(Ca) channels in NANC relaxation of mouse distal colon.
    Dhaese I; Vanneste G; Sips P; Buys E; Brouckaert P; Lefebvre RA
    Eur J Pharmacol; 2008 Jul; 589(1-3):251-9. PubMed ID: 18572161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NO-independent, haem-dependent soluble guanylate cyclase stimulators.
    Stasch JP; Hobbs AJ
    Handb Exp Pharmacol; 2009; (191):277-308. PubMed ID: 19089334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chemistry and biology of soluble guanylate cyclase stimulators and activators.
    Follmann M; Griebenow N; Hahn MG; Hartung I; Mais FJ; Mittendorf J; Schäfer M; Schirok H; Stasch JP; Stoll F; Straub A
    Angew Chem Int Ed Engl; 2013 Sep; 52(36):9442-62. PubMed ID: 23963798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NO- and haem-independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle.
    Stasch JP; Schmidt P; Alonso-Alija C; Apeler H; Dembowsky K; Haerter M; Heil M; Minuth T; Perzborn E; Pleiss U; Schramm M; Schroeder W; Schröder H; Stahl E; Steinke W; Wunder F
    Br J Pharmacol; 2002 Jul; 136(5):773-83. PubMed ID: 12086987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing domain interactions in soluble guanylate cyclase.
    Derbyshire ER; Winter MB; Ibrahim M; Deng S; Spiro TG; Marletta MA
    Biochemistry; 2011 May; 50(20):4281-90. PubMed ID: 21491957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide-independent stimulation of soluble guanylate cyclase with BAY 41-2272 in cardiovascular disease.
    Boerrigter G; Burnett JC
    Cardiovasc Drug Rev; 2007; 25(1):30-45. PubMed ID: 17445086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic change of heme environment in soluble guanylate cyclase and complexation of NO-independent drug agents with H-NOX domain.
    Alisaraie L; Fu Y; Tuszynski JA
    Chem Biol Drug Des; 2013 Mar; 81(3):359-81. PubMed ID: 23095288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure/activity relationships of (M)ANT- and TNP-nucleotides for inhibition of rat soluble guanylyl cyclase α1β1.
    Dove S; Danker KY; Stasch JP; Kaever V; Seifert R
    Mol Pharmacol; 2014 Apr; 85(4):598-607. PubMed ID: 24470063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial residues promote an optimal alignment of the catalytic center in human soluble guanylate cyclase: heterodimerization is required but not sufficient for activity.
    Seeger F; Quintyn R; Tanimoto A; Williams GJ; Tainer JA; Wysocki VH; Garcin ED
    Biochemistry; 2014 Apr; 53(13):2153-65. PubMed ID: 24669844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular mechanism of heme loss from oxidized soluble guanylate cyclase induced by conformational change.
    Pan J; Zhang X; Yuan H; Xu Q; Zhang H; Zhou Y; Huang ZX; Tan X
    Biochim Biophys Acta; 2016 May; 1864(5):488-500. PubMed ID: 26876536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.