BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26265079)

  • 1. The effect of solids residence time on phosphorus adsorption to hydrous ferric oxide floc.
    Conidi D; Parker WJ
    Water Res; 2015 Nov; 84():323-32. PubMed ID: 26265079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of solids residence time on dynamic responses in chemical P removal.
    Conidi D; Parker WJ; Smith S
    Water Environ Res; 2019 Mar; 91(3):250-258. PubMed ID: 30624834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamic physicochemical model for chemical phosphorus removal.
    Hauduc H; Takács I; Smith S; Szabo A; Murthy S; Daigger GT; Spérandio M
    Water Res; 2015 Apr; 73():157-70. PubMed ID: 25655322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic stabilization of hydrous ferric oxide by adsorption of phosphate and arsenate.
    Majzlan J
    Environ Sci Technol; 2011 Jun; 45(11):4726-32. PubMed ID: 21557572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrous ferric oxide-resin nanocomposites of tunable structure for arsenite removal: effect of the host pore structure.
    Wang J; Zhang S; Pan B; Zhang W; Lv L
    J Hazard Mater; 2011 Dec; 198():241-6. PubMed ID: 22047722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(V) from aqueous solutions.
    Pehlivan E; Tran HT; Ouédraogo WK; Schmidt C; Zachmann D; Bahadir M
    Food Chem; 2013 May; 138(1):133-8. PubMed ID: 23265467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of Tetracycline by Hydrous Ferric Oxide: Adsorption Kinetics, Isotherms, and Mechanism.
    Zang J; Wu T; Song H; Zhou N; Fan S; Xie Z; Tang J
    Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31752348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate adsorption on hydrous ferric oxide (HFO) at different salinities and pHs.
    Zhang H; Elskens M; Chen G; Chou L
    Chemosphere; 2019 Jun; 225():352-359. PubMed ID: 30884296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate complexation model and its implications for chemical phosphorus removal.
    Smith S; Takács I; Murthy S; Daigger GT; Szabó A
    Water Environ Res; 2008 May; 80(5):428-38. PubMed ID: 18605382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Solids Residence Time on Chemical Phosphorus Removal in Low Concentration Applications.
    Conidi D; Parker WJ
    Water Environ Res; 2016 Nov; 88(11):2104-2110. PubMed ID: 28661326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the effects of soluble microbial product on phosphate adsorption onto fresh hydrous ferric oxides by surface complexation models.
    Mao Y; Wang W; Ma C
    Water Sci Technol; 2016 Nov; 74(10):2446-2453. PubMed ID: 27858801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superconducting magnetic separation of phosphate using freshly formed hydrous ferric oxide sols.
    Li Y; Li Z; Xu F; Zhang W
    Environ Technol; 2017 Feb; 38(3):377-384. PubMed ID: 27241800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury removal from municipal secondary effluent with hydrous ferric oxide reactive filtration.
    Beutel MW; Dent SR; Newcombe RL; Möller G
    Water Environ Res; 2019 Feb; 91(2):132-143. PubMed ID: 30735297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus removal from municipal wastewater by hydrous ferric oxide reactive filtration and coupled chemically enhanced secondary treatment: part II--mechanism.
    Newcombe RL; Strawn DG; Grant TM; Childers SE; Möller G
    Water Environ Res; 2008 Mar; 80(3):248-56. PubMed ID: 18419013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorus removal from municipal wastewater by hydrous ferric oxide reactive filtration and coupled chemically enhanced secondary treatment: part I--performance.
    Newcombe RL; Rule RA; Hart BK; Möller G
    Water Environ Res; 2008 Mar; 80(3):238-47. PubMed ID: 18419012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus recovery from biogas slurry by ultrasound/H
    He X; Zhang T; Ren H; Li G; Ding L; Pawlowski L
    Waste Manag; 2017 Feb; 60():219-229. PubMed ID: 27594573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of arsenic from high ionic strength solutions: effects of ionic strength, pH, and preformed versus in situ formed HFO.
    Mercer KL; Tobiason JE
    Environ Sci Technol; 2008 May; 42(10):3797-802. PubMed ID: 18546725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of fluoride on synthetic iron (III), zirconium(IV) and binary iron(III)-zirconium (IV) oxides: comparative assessment on pH effect and isotherm.
    Biswas K; Bandhopadhyay D; Ghosh UC
    J Environ Sci Eng; 2008 Apr; 50(2):153-62. PubMed ID: 19295101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents.
    Pan B; Wu J; Pan B; Lv L; Zhang W; Xiao L; Wang X; Tao X; Zheng S
    Water Res; 2009 Sep; 43(17):4421-9. PubMed ID: 19615711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable iron isotope fractionation between aqueous Fe(II) and hydrous ferric oxide.
    Wu L; Beard BL; Roden EE; Johnson CM
    Environ Sci Technol; 2011 Mar; 45(5):1847-52. PubMed ID: 21294566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.