These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26265079)

  • 41. Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer.
    Sengupta S; Pandit A
    Water Res; 2011 May; 45(11):3318-30. PubMed ID: 21531433
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Removal of arsenate with hydrous ferric oxide coprecipitation: effect of humic acid.
    Du J; Jing C; Duan J; Zhang Y; Hu S
    J Environ Sci (China); 2014 Feb; 26(2):240-7. PubMed ID: 25076514
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In situ precipitation of hydrous ferric oxide (HFO) for remediation of subsurface iodine contamination.
    Wang G; Szecsody JE; Avalos NM; Qafoku NP; Freedman VL
    J Contam Hydrol; 2020 Nov; 235():103705. PubMed ID: 32927336
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ion exchangers in radioactive waste management. Part XI. Removal of barium and strontium ions from aqueous solutions by hydrous ferric oxide.
    Mishra SP; Tiwary D
    Appl Radiat Isot; 1999 Oct; 51(4):359-66. PubMed ID: 10464913
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antimony(V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger.
    Miao Y; Han F; Pan B; Niu Y; Nie G; Lv L
    J Environ Sci (China); 2014 Feb; 26(2):307-14. PubMed ID: 25076522
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rates of hydrous ferric oxide crystallization and the influence on coprecipitated arsenate.
    Ford RG
    Environ Sci Technol; 2002 Jun; 36(11):2459-63. PubMed ID: 12075804
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inorganic particulates in removal of heavy metal toxic ions--part X: rapid and efficient removal of Hg(II) ions from aqueous solutions by hydrous ferric and hydrous tungsten oxides.
    Mishra SP; Vijaya
    J Colloid Interface Sci; 2006 Apr; 296(2):383-8. PubMed ID: 16359696
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitrite reduction with hydrous ferric oxide and Fe(II): stoichiometry, rate, and mechanism.
    Tai YL; Dempsey BA
    Water Res; 2009 Feb; 43(2):546-52. PubMed ID: 19081595
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unexpected Favorable Role of Ca
    Zhang Y; She X; Gao X; Shan C; Pan B
    Environ Sci Technol; 2019 Jan; 53(1):365-372. PubMed ID: 30481471
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adsorption of Toxic Metals Using Hydrous Ferric Oxide Nanoparticles Embedded in Hybrid Ion-Exchange Resins.
    Sodzidzi Z; Phiri Z; Nure JF; Msagati TAM; de Kock LA
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473639
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of iodide adsorption on oxides by surface complexation modeling with spectroscopic confirmation.
    Nagata T; Fukushi K; Takahashi Y
    J Colloid Interface Sci; 2009 Apr; 332(2):309-16. PubMed ID: 19176225
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced Removal of Heavy Metals from Water by Hydrous Ferric Oxide-Modified Biochar.
    Li Y; Gao L; Lu Z; Wang Y; Wang Y; Wan S
    ACS Omega; 2020 Nov; 5(44):28702-28711. PubMed ID: 33195923
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of interactions between natural organic matter and metal oxides on the desorption kinetics of uranium from heterogeneous colloidal suspensions.
    Yang Y; Saiers JE; Barnett MO
    Environ Sci Technol; 2013 Mar; 47(6):2661-9. PubMed ID: 23387874
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microwave digestion-assisted HFO/biochar adsorption to recover phosphorus from swine manure.
    Zhang T; Xu H; Li H; He X; Shi Y; Kruse A
    Sci Total Environ; 2018 Apr; 621():1512-1526. PubMed ID: 29102181
    [TBL] [Abstract][Full Text] [Related]  

  • 55. EXAFS study of Zn sorption mechanisms on hydrous ferric oxide over extended reaction time.
    Lee S; Anderson PR
    J Colloid Interface Sci; 2005 Jun; 286(1):82-9. PubMed ID: 15848405
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of low molecular weight organic acids on phosphorus adsorption by ferric-alum water treatment residuals.
    Wang C; Wang Z; Lin L; Tian B; Pei Y
    J Hazard Mater; 2012 Feb; 203-204():145-50. PubMed ID: 22192585
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mine drainage precipitates attenuate and conceal wastewater-derived phosphate pollution in stream water.
    Smyntek PM; Lamagna N; Cravotta CA; Strosnider WHJ
    Sci Total Environ; 2022 Apr; 815():152672. PubMed ID: 34968601
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ni(II) complexation to amorphous hydrous ferric oxide: an X-ray absorption spectroscopy study.
    Xu Y; Axe L; Boonfueng T; Tyson TA; Trivedi P; Pandya K
    J Colloid Interface Sci; 2007 Oct; 314(1):10-7. PubMed ID: 17561066
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: effects of solid transformation, surface coverage, and humic acid.
    Jang JH; Dempsey BA; Burgos WD
    Water Res; 2008 Apr; 42(8-9):2269-77. PubMed ID: 18191438
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Uranium extraction from laboratory-synthesized, uranium-doped hydrous ferric oxides.
    Smith SC; Douglas M; Moore DA; Kukkadapu RK; Arey BW
    Environ Sci Technol; 2009 Apr; 43(7):2341-7. PubMed ID: 19452884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.