These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26265146)

  • 21. Acceleration of robust "biotube" vascular graft fabrication by in-body tissue architecture technology using a novel eosin Y-releasing mold.
    Nakayama Y; Tsujinaka T
    J Biomed Mater Res B Appl Biomater; 2014 Feb; 102(2):231-8. PubMed ID: 23908123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of the novel biotube inserting technique for acceleration of thick-walled autologous tissue-engineered vascular grafts fabrication.
    Ma N; Wang Z; Chen H; Sun Y; Hong H; Sun Q; Yin M; Liu J
    J Mater Sci Mater Med; 2011 Apr; 22(4):1037-43. PubMed ID: 21331604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acute Phase Pilot Evaluation of Small Diameter Long iBTA Induced Vascular Graft "Biotube" in a Goat Model.
    Higashita R; Nakayama Y; Shiraishi Y; Iwai R; Inoue Y; Yamada A; Terazawa T; Tajikawa T; Miyazaki M; Ohara M; Umeno T; Okamoto K; Oie T; Yambe T; Miyamoto S
    EJVES Vasc Forum; 2022; 54():27-35. PubMed ID: 35128505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of biotube vascular grafts incorporating cuffs for easy implantation.
    Watanabe T; Kanda K; Ishibashi-Ueda H; Yaku H; Nakayama Y
    J Artif Organs; 2007; 10(1):10-5. PubMed ID: 17380291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro maturation of "biotube" vascular grafts induced by a 2-day pulsatile flow loading.
    Huang H; Zhou YM; Ishibashi-Ueda H; Takamizawa K; Ando J; Kanda K; Yaku H; Nakayama Y
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):320-8. PubMed ID: 19484781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracheal Replacement Using an In-Body Tissue-Engineered Collagenous Tube "BIOTUBE" with a Biodegradable Stent in a Beagle Model: A Preliminary Report on a New Technique.
    Hiwatashi S; Nakayama Y; Umeda S; Takama Y; Terazawa T; Okuyama H
    Eur J Pediatr Surg; 2019 Feb; 29(1):90-96. PubMed ID: 30388721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of tissue-engineered self-expandable aortic stent grafts (Bio stent grafts) using in-body tissue architecture technology in beagles.
    Kawajiri H; Mizuno T; Moriwaki T; Ishibashi-Ueda H; Yamanami M; Kanda K; Yaku H; Nakayama Y
    J Biomed Mater Res B Appl Biomater; 2015 Feb; 103(2):381-6. PubMed ID: 24895150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. First Successful Clinical Application of the In Vivo Tissue-Engineered Autologous Vascular Graft.
    Kato N; Yamagishi M; Kanda K; Miyazaki T; Maeda Y; Yamanami M; Watanabe T; Yaku H
    Ann Thorac Surg; 2016 Oct; 102(4):1387-90. PubMed ID: 27645948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of an in vivo tissue-engineered valved conduit (type S biovalve) using a slitted mold.
    Funayama M; Furukoshi M; Moriwaki T; Nakayama Y
    J Artif Organs; 2015 Dec; 18(4):382-6. PubMed ID: 26233653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of in vivo tissue-engineered autologous tissue-covered stents (biocovered stents).
    Nakayama Y; Zhou YM; Ishibashi-Ueda H
    J Artif Organs; 2007; 10(3):171-6. PubMed ID: 17846716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Histological and mechanical properties of autologous living tissue biotubes.
    Chen XS; Ou TW; Zhang J; Li JX; Chen B; Yu HX; Gu YQ; Cui YQ; Zhang JY; Xu YL; Sun HC; Liu S; Wang R
    Exp Ther Med; 2013 Jun; 5(6):1613-1618. PubMed ID: 23837041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological small-calibre tissue engineered blood vessels developed by electrospinning and in-body tissue architecture.
    Su Z; Xing Y; Wang F; Xu Z; Gu Y
    J Mater Sci Mater Med; 2022 Sep; 33(10):67. PubMed ID: 36178545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A tissue-engineered, decellularized, connective tissue membrane for allogeneic arterial patch implantation.
    Yamanami M; Kanda K; Morimoto K; Inoue T; Watanabe T; Sakai O; Kami D; Gojo S; Yaku H
    Artif Organs; 2022 Apr; 46(4):633-642. PubMed ID: 34739732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A completely autologous valved conduit prepared in the open form of trileaflets (type VI biovalve): mold design and valve function in vitro.
    Nakayama Y; Yahata Y; Yamanami M; Tajikawa T; Ohba K; Kanda K; Yaku H
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):135-41. PubMed ID: 21714078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding.
    Yokota T; Ichikawa H; Matsumiya G; Kuratani T; Sakaguchi T; Iwai S; Shirakawa Y; Torikai K; Saito A; Uchimura E; Kawaguchi N; Matsuura N; Sawa Y
    J Thorac Cardiovasc Surg; 2008 Oct; 136(4):900-7. PubMed ID: 18954628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a completely autologous valved conduit with the sinus of Valsalva using in-body tissue architecture technology: a pilot study in pulmonary valve replacement in a beagle model.
    Yamanami M; Yahata Y; Uechi M; Fujiwara M; Ishibashi-Ueda H; Kanda K; Watanabe T; Tajikawa T; Ohba K; Yaku H; Nakayama Y
    Circulation; 2010 Sep; 122(11 Suppl):S100-6. PubMed ID: 20837900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and in vivo validation of tissue-engineered, small-diameter vascular grafts from decellularized aortae of fetal pigs and canine vascular endothelial cells.
    Ma X; He Z; Li L; Liu G; Li Q; Yang D; Zhang Y; Li N
    J Cardiothorac Surg; 2017 Nov; 12(1):101. PubMed ID: 29178903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modifications of the mechanical properties of in vivo tissue-engineered vascular grafts by chemical treatments for a short duration.
    Inoue T; Kanda K; Yamanami M; Kami D; Gojo S; Yaku H
    PLoS One; 2021; 16(3):e0248346. PubMed ID: 33711057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of an in vivo tissue-engineered, autologous heart valve (the biovalve): preparation of a prototype model.
    Hayashida K; Kanda K; Yaku H; Ando J; Nakayama Y
    J Thorac Cardiovasc Surg; 2007 Jul; 134(1):152-9. PubMed ID: 17599501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A self-renewing, tissue-engineered vascular graft for arterial reconstruction.
    Torikai K; Ichikawa H; Hirakawa K; Matsumiya G; Kuratani T; Iwai S; Saito A; Kawaguchi N; Matsuura N; Sawa Y
    J Thorac Cardiovasc Surg; 2008 Jul; 136(1):37-45, 45.e1. PubMed ID: 18603051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.