These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26265353)

  • 21. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics.
    Hu Y; Sinha SK; Patel S
    Langmuir; 2015 Jun; 31(24):6615-31. PubMed ID: 25614183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes.
    Paterson DJ; Tassieri M; Reboud J; Wilson R; Cooper JM
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):E8324-E8332. PubMed ID: 28931578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magainins as paradigm for the mode of action of pore forming polypeptides.
    Matsuzaki K
    Biochim Biophys Acta; 1998 Nov; 1376(3):391-400. PubMed ID: 9804997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energetics and self-assembly of amphipathic peptide pores in lipid membranes.
    Zemel A; Fattal DR; Ben-Shaul A
    Biophys J; 2003 Apr; 84(4):2242-55. PubMed ID: 12668433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein.
    Ambroggio EE; Separovic F; Bowie JH; Fidelio GD; Bagatolli LA
    Biophys J; 2005 Sep; 89(3):1874-81. PubMed ID: 15994901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation and stabilization of pores in bilayer membranes by peptide-like amphiphilic polymers.
    Checkervarty A; Werner M; Sommer JU
    Soft Matter; 2018 Mar; 14(13):2526-2534. PubMed ID: 29537426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane insertion and bilayer perturbation by antimicrobial peptide CM15.
    Pistolesi S; Pogni R; Feix JB
    Biophys J; 2007 Sep; 93(5):1651-60. PubMed ID: 17496013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of pore dimensions in lipid membranes induced by peptides and other biomolecules: A review.
    Bertrand B; Garduño-Juárez R; Munoz-Garay C
    Biochim Biophys Acta Biomembr; 2021 Apr; 1863(4):183551. PubMed ID: 33465367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis.
    Lee TH; Heng C; Swann MJ; Gehman JD; Separovic F; Aguilar MI
    Biochim Biophys Acta; 2010 Oct; 1798(10):1977-86. PubMed ID: 20599687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Joint Reaction Coordinate for Computing the Free-Energy Landscape of Pore Nucleation and Pore Expansion in Lipid Membranes.
    Hub JS
    J Chem Theory Comput; 2021 Feb; 17(2):1229-1239. PubMed ID: 33427469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides.
    Shai Y
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):55-70. PubMed ID: 10590302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects.
    Wieprecht T; Apostolov O; Beyermann M; Seelig J
    Biochemistry; 2000 Jan; 39(2):442-52. PubMed ID: 10631006
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic transitions of membrane-active peptides.
    Grage SL; Afonin S; Ulrich AS
    Methods Mol Biol; 2010; 618():183-207. PubMed ID: 20094866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applying Fluorescence Correlation Spectroscopy to Investigate Peptide-Induced Membrane Disruption.
    Kristensen K; Henriksen JR; Andresen TL
    Methods Mol Biol; 2017; 1548():159-180. PubMed ID: 28013503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Contribution of Differential Scanning Calorimetry for the Study of Peptide/Lipid Interactions.
    Jobin ML; Alves ID
    Methods Mol Biol; 2019; 1964():3-15. PubMed ID: 30929231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amyloid peptide pores and the beta sheet conformation.
    Kagan BL; Thundimadathil J
    Adv Exp Med Biol; 2010; 677():150-67. PubMed ID: 20687488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elementary processes for the entry of cell-penetrating peptides into lipid bilayer vesicles and bacterial cells.
    Islam MZ; Sharmin S; Moniruzzaman M; Yamazaki M
    Appl Microbiol Biotechnol; 2018 May; 102(9):3879-3892. PubMed ID: 29523934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: importance of attractive force between cell-penetrating peptides and lipid head group.
    Kawamoto S; Takasu M; Miyakawa T; Morikawa R; Oda T; Futaki S; Nagao H
    J Chem Phys; 2011 Mar; 134(9):095103. PubMed ID: 21385001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tethered-bilayer lipid membranes as a support for membrane-active peptides.
    Cornell BA; Krishna G; Osman PD; Pace RD; Wieczorek L
    Biochem Soc Trans; 2001 Aug; 29(Pt 4):613-7. PubMed ID: 11498038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.