These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26265353)

  • 41. The penetrating properties of the tumor homing peptide LyP-1 in model lipid membranes.
    Ciobanasu C; Dragomir I; Apetrei A
    J Pept Sci; 2019 Mar; 25(3):e3145. PubMed ID: 30588706
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Membrane potential drives direct translocation of cell-penetrating peptides.
    Gao X; Hong S; Liu Z; Yue T; Dobnikar J; Zhang X
    Nanoscale; 2019 Jan; 11(4):1949-1958. PubMed ID: 30644958
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Parameters modulating the maximum insertion pressure of proteins and peptides in lipid monolayers.
    Calvez P; Bussières S; Eric Demers ; Salesse C
    Biochimie; 2009 Jun; 91(6):718-33. PubMed ID: 19345719
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanics of lipid bilayers: What do we learn from pore-spanning membranes?
    Janshoff A; Steinem C
    Biochim Biophys Acta; 2015 Nov; 1853(11 Pt B):2977-83. PubMed ID: 26025679
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Peptide-induced membrane curvature in edge-stabilized open bilayers: a theoretical and molecular dynamics study.
    Pannuzzo M; Raudino A; Böckmann RA
    J Chem Phys; 2014 Jul; 141(2):024901. PubMed ID: 25028040
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Why and how are peptide-lipid interactions utilized for self defence?
    Matsuzaki K
    Biochem Soc Trans; 2001 Aug; 29(Pt 4):598-601. PubMed ID: 11498035
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of topology, length, and charge on the activity of a kininogen-derived peptide on lipid membranes and bacteria.
    Ringstad L; Kacprzyk L; Schmidtchen A; Malmsten M
    Biochim Biophys Acta; 2007 Mar; 1768(3):715-27. PubMed ID: 17207456
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Binding, folding and insertion of a β-hairpin peptide at a lipid bilayer surface: Influence of electrostatics and lipid tail packing.
    Reid KA; Davis CM; Dyer RB; Kindt JT
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):792-800. PubMed ID: 29291379
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides.
    Epand RM; Shai Y; Segrest JP; Anantharamaiah GM
    Biopolymers; 1995; 37(5):319-38. PubMed ID: 7632881
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ion pore formation in lipid bilayers and related energetic considerations.
    Ashrafuzzaman M; Tuszynski J
    Curr Med Chem; 2012; 19(11):1619-34. PubMed ID: 22376036
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes.
    Gazit E; Miller IR; Biggin PC; Sansom MS; Shai Y
    J Mol Biol; 1996 May; 258(5):860-70. PubMed ID: 8637016
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metastable Prepores in Tension-Free Lipid Bilayers.
    Ting CL; Awasthi N; Müller M; Hub JS
    Phys Rev Lett; 2018 Mar; 120(12):128103. PubMed ID: 29694074
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Resolving the kinetics of lipid, protein and peptide diffusion in membranes.
    Sanderson JM
    Mol Membr Biol; 2012 Aug; 29(5):118-43. PubMed ID: 22582994
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pore-forming peptides induce rapid phospholipid flip-flop in membranes.
    Fattal E; Nir S; Parente RA; Szoka FC
    Biochemistry; 1994 May; 33(21):6721-31. PubMed ID: 8204607
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interactions of phospholipid bilayers with several classes of amphiphilic alpha-helical peptides: insights from coarse-grained molecular dynamics simulations.
    Gkeka P; Sarkisov L
    J Phys Chem B; 2010 Jan; 114(2):826-39. PubMed ID: 20028006
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Peridynamic Modeling of Ruptures in Biomembranes.
    Taylor M; Gözen I; Patel S; Jesorka A; Bertoldi K
    PLoS One; 2016; 11(11):e0165947. PubMed ID: 27829001
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1.
    Almarwani B; Phambu EN; Alexander C; Nguyen HAT; Phambu N; Sunda-Meya A
    Biochim Biophys Acta Biomembr; 2018 Jun; 1860(6):1394-1402. PubMed ID: 29621495
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Artificial peptides to induce membrane denaturation and disruption and modulate membrane composition and fusion.
    Lāce I; Cotroneo ER; Hesselbarth N; Simeth NA
    J Pept Sci; 2023 May; 29(5):e3466. PubMed ID: 36478488
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antimicrobial Peptide K
    Enoki TA; Moreira-Silva I; Lorenzon EN; Cilli EM; Perez KR; Riske KA; Lamy MT
    Langmuir; 2018 Feb; 34(5):2014-2025. PubMed ID: 29284086
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes.
    Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK
    Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.