These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26266263)

  • 1. Magnetic Resonance Imaging of Atherosclerosis Using CD81-Targeted Microparticles of Iron Oxide in Mice.
    Yan F; Yang W; Li X; Liu H; Nan X; Xie L; Zhou D; Xie G; Wu J; Qiu B; Liu X; Zheng H
    Biomed Res Int; 2015; 2015():758616. PubMed ID: 26266263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic imaging of endothelial CD81 expression using CD81-targeted contrast agents in in vitro and in vivo studies.
    Yan F; Li X; Jin Q; Chen J; Shandas R; Wu J; Li L; Ling T; Yang W; Chen Y; Liu X; Zheng H
    Ultrasound Med Biol; 2012 Apr; 38(4):670-80. PubMed ID: 22341598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A leukocyte-mimetic magnetic resonance imaging contrast agent homes rapidly to activated endothelium and tracks with atherosclerotic lesion macrophage content.
    McAteer MA; Mankia K; Ruparelia N; Jefferson A; Nugent HB; Stork LA; Channon KM; Schneider JE; Choudhury RP
    Arterioscler Thromb Vasc Biol; 2012 Jun; 32(6):1427-35. PubMed ID: 22499989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular magnetic resonance imaging of angiogenesis in vivo using polyvalent cyclic RGD-iron oxide microparticle conjugates.
    Melemenidis S; Jefferson A; Ruparelia N; Akhtar AM; Xie J; Allen D; Hamilton A; Larkin JR; Perez-Balderas F; Smart SC; Muschel RJ; Chen X; Sibson NR; Choudhury RP
    Theranostics; 2015; 5(5):515-29. PubMed ID: 25767618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide.
    McAteer MA; Schneider JE; Ali ZA; Warrick N; Bursill CA; von zur Muhlen C; Greaves DR; Neubauer S; Channon KM; Choudhury RP
    Arterioscler Thromb Vasc Biol; 2008 Jan; 28(1):77-83. PubMed ID: 17962629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis.
    von zur Muhlen C; von Elverfeldt D; Moeller JA; Choudhury RP; Paul D; Hagemeyer CE; Olschewski M; Becker A; Neudorfer I; Bassler N; Schwarz M; Bode C; Peter K
    Circulation; 2008 Jul; 118(3):258-67. PubMed ID: 18574047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An approach towards molecular imaging of activated platelets allows imaging of symptomatic human carotid plaques in a new model of a tissue flow chamber.
    von Elverfeldt D; Meissner M; Peter K; Paul D; Meixner F; Neudorfer I; Merkle A; Harloff A; Zirlik A; Schöllhorn J; Markl M; Hennig J; Bode C; von zur Muhlen C
    Contrast Media Mol Imaging; 2012; 7(2):204-13. PubMed ID: 22434633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PECAM-1-targeted micron-sized particles of iron oxide as MRI contrast agent for detection of vascular remodeling after cerebral ischemia.
    Deddens LH; van Tilborg GA; van der Toorn A; de Vries HE; Dijkhuizen RM
    Contrast Media Mol Imaging; 2013; 8(5):393-401. PubMed ID: 23740809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance imaging of brain inflammation using microparticles of iron oxide.
    McAteer MA; von Zur Muhlen C; Anthony DC; Sibson NR; Choudhury RP
    Methods Mol Biol; 2011; 680():103-15. PubMed ID: 21153376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular magnetic resonance imaging allows the detection of activated platelets in a new mouse model of coronary artery thrombosis.
    Duerschmied D; Meißner M; Peter K; Neudorfer I; Roming F; Zirlik A; Bode C; von Elverfeldt D; von Zur Muhlen C
    Invest Radiol; 2011 Oct; 46(10):618-23. PubMed ID: 21577120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of molecularly targeted MRI in the brain: empirical comparison of sequences and particles.
    Zarghami N; Khrapitchev AA; Perez-Balderas F; Soto MS; Larkin JR; Bau L; Sibson NR
    Int J Nanomedicine; 2018; 13():4345-4359. PubMed ID: 30100719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of activated platelets by targeted magnetic resonance imaging utilizing conformation-specific antibodies against glycoprotein IIb/IIIa.
    von zur Muhlen C; Peter K; Ali ZA; Schneider JE; McAteer MA; Neubauer S; Channon KM; Bode C; Choudhury RP
    J Vasc Res; 2009; 46(1):6-14. PubMed ID: 18515970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging of radiation-induced brain injury using targeted microparticles of iron oxide.
    Zhu Y; Ling Y; Zhong J; Liu X; Wei K; Huang S
    Acta Radiol; 2012 Sep; 53(7):812-9. PubMed ID: 22798291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel molecular magnetic resonance imaging agent targeting activated leukocyte cell adhesion molecule as demonstrated in mouse brain metastasis models.
    Zarghami N; Soto MS; Perez-Balderas F; Khrapitchev AA; Karali CS; Johanssen VA; Ansorge O; Larkin JR; Sibson NR
    J Cereb Blood Flow Metab; 2021 Jul; 41(7):1592-1607. PubMed ID: 33153376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-invasive assessment for endothelial CD81 expression via targeted microbubbles.
    Yan F; Jin Q; Liu X; Zheng H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7223-5. PubMed ID: 22256005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo detection of activated platelets allows characterizing rupture of atherosclerotic plaques with molecular magnetic resonance imaging in mice.
    von Elverfeldt D; von zur Muhlen C; Wiens K; Neudorfer I; Zirlik A; Meissner M; Tilly P; Charles AL; Bode C; Peter K; Fabre JE
    PLoS One; 2012; 7(9):e45008. PubMed ID: 23028736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo quantification of VCAM-1 expression in renal ischemia reperfusion injury using non-invasive magnetic resonance molecular imaging.
    Akhtar AM; Schneider JE; Chapman SJ; Jefferson A; Digby JE; Mankia K; Chen Y; McAteer MA; Wood KJ; Choudhury RP
    PLoS One; 2010 Sep; 5(9):e12800. PubMed ID: 20877722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron oxide core oil-in-water nanoemulsion as tracer for atherosclerosis MPI and MRI imaging.
    Prévot G; Kauss T; Lorenzato C; Gaubert A; Larivière M; Baillet J; Laroche-Traineau J; Jacobin-Valat MJ; Adumeau L; Mornet S; Barthélémy P; Duonor-Cérutti M; Clofent-Sanchez G; Crauste-Manciet S
    Int J Pharm; 2017 Nov; 532(2):669-676. PubMed ID: 28899764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo MR imaging of intercellular adhesion molecule-1 expression in an animal model of multiple sclerosis.
    Blezer EL; Deddens LH; Kooij G; Drexhage J; van der Pol SM; Reijerkerk A; Dijkhuizen RM; de Vries HE
    Contrast Media Mol Imaging; 2015; 10(2):111-21. PubMed ID: 24753465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VCAM-1-targeted magnetic resonance imaging reveals subclinical disease in a mouse model of multiple sclerosis.
    Serres S; Mardiguian S; Campbell SJ; McAteer MA; Akhtar A; Krapitchev A; Choudhury RP; Anthony DC; Sibson NR
    FASEB J; 2011 Dec; 25(12):4415-22. PubMed ID: 21908714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.