These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26266263)

  • 41. Cellular magnetic resonance imaging: in vivo tracking of gastric cancer cells and detecting of lymph node metastases using microparticles of iron oxide in mice.
    Chen J; Ren G; Cai R; Wu X; Gui T; Zhao J; Li H; Guo C
    Cancer Manag Res; 2019; 11():7317-7326. PubMed ID: 31447589
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In Vivo Molecular MRI of ICAM-1 Expression on Endothelium and Leukocytes from Subacute to Chronic Stages After Experimental Stroke.
    Deddens LH; van Tilborg GAF; van der Marel K; Hunt H; van der Toorn A; Viergever MA; de Vries HE; Dijkhuizen RM
    Transl Stroke Res; 2017 May; 8(5):440-8. PubMed ID: 28509283
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Epidermal growth factor receptor-targeted ultra-small superparamagnetic iron oxide particles for magnetic resonance molecular imaging of lung cancer cells in vitro.
    Chen CL; Hu GY; Mei Q; Qiu H; Long GX; Hu GQ
    Chin Med J (Engl); 2012 Jul; 125(13):2322-8. PubMed ID: 22882856
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Imaging monocytes with iron oxide nanoparticles targeted towards the monocyte integrin MAC-1 (CD11b/CD18) does not result in improved atherosclerotic plaque detection by in vivo MRI.
    von zur Muhlen C; Fink-Petri A; Salaklang J; Paul D; Neudorfer I; Berti V; Merkle A; Peter K; Bode C; von Elverfeldt D
    Contrast Media Mol Imaging; 2010; 5(5):268-75. PubMed ID: 20973112
    [TBL] [Abstract][Full Text] [Related]  

  • 45. VCAM-1-targeted MRI Enables Detection of Brain Micrometastases from Different Primary Tumors.
    Cheng VWT; Soto MS; Khrapitchev AA; Perez-Balderas F; Zakaria R; Jenkinson MD; Middleton MR; Sibson NR
    Clin Cancer Res; 2019 Jan; 25(2):533-543. PubMed ID: 30389659
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Iron-oxide-based twin nanoplates with strong T
    Wei R; Zhou T; Sun C; Lin H; Yang L; Ren BW; Chen Z; Gao J
    Nanoscale; 2018 Oct; 10(38):18398-18406. PubMed ID: 30256373
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MRI of ICAM-1 upregulation after stroke: the importance of choosing the appropriate target-specific particulate contrast agent.
    Deddens LH; van Tilborg GA; van der Toorn A; van der Marel K; Paulis LE; van Bloois L; Storm G; Strijkers GJ; Mulder WJ; de Vries HE; Dijkhuizen RM
    Mol Imaging Biol; 2013 Aug; 15(4):411-22. PubMed ID: 23400400
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles.
    Moonen RP; van der Tol P; Hectors SJ; Starmans LW; Nicolay K; Strijkers GJ
    Magn Reson Med; 2015 Dec; 74(6):1740-9. PubMed ID: 25470118
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cryopreservation of embryonic stem cell-derived multicellular neural aggregates labeled with micron-sized particles of iron oxide for magnetic resonance imaging.
    Yan Y; Sart S; Calixto Bejarano F; Muroski ME; Strouse GF; Grant SC; Li Y
    Biotechnol Prog; 2015; 31(2):510-21. PubMed ID: 25905549
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [2-deoxy-D-glucose modified supermagnetic iron oxide nanoparticles enhance the contrasting effect on MRI of human lung adenocarcinoma A549 tumor in nude mice].
    Shan X; Yuan D; Xiong F; Gu N; Wang P
    Zhonghua Zhong Liu Za Zhi; 2014 Feb; 36(2):85-91. PubMed ID: 24796454
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging.
    You DG; Saravanakumar G; Son S; Han HS; Heo R; Kim K; Kwon IC; Lee JY; Park JH
    Carbohydr Polym; 2014 Jan; 101():1225-33. PubMed ID: 24299895
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multimodal imaging of micron-sized iron oxide particles following in vitro and in vivo uptake by stem cells: down to the nanometer scale.
    Roose D; Leroux F; De Vocht N; Guglielmetti C; Pintelon I; Adriaensen D; Ponsaerts P; Van der Linden A; Bals S
    Contrast Media Mol Imaging; 2014; 9(6):400-8. PubMed ID: 24753446
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Negative MR contrast caused by USPIO uptake in lymph nodes may lead to false positive observations with in vivo visualization of murine atherosclerotic plaque.
    te Boekhorst BC; Bovens SM; Nederhoff MG; van de Kolk KW; Cramer MJ; van Oosterhout MF; Ten Hove M; Doevendans PA; Pasterkamp G; van Echteld CJ
    Atherosclerosis; 2010 May; 210(1):122-9. PubMed ID: 19939385
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo magnetic resonance imaging of atherosclerotic lesions with a newly developed Evans blue-DTPA-gadolinium contrast medium in apolipoprotein-E-deficient mice.
    Yasuda S; Ikuta K; Uwatoku T; Oi K; Abe K; Hyodo F; Yoshimitsu K; Sugimura K; Utsumi H; Katayama Y; Shimokawa H
    J Vasc Res; 2008; 45(2):123-8. PubMed ID: 17940339
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Magnetic iron oxide nanoparticles as novel and efficient tools for atherosclerosis diagnosis.
    Montiel Schneider MG; Lassalle VL
    Biomed Pharmacother; 2017 Sep; 93():1098-1115. PubMed ID: 28738519
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Combined molecular MRI and immuno-spin-trapping for in vivo detection of free radicals in orthotopic mouse GL261 gliomas.
    Towner RA; Smith N; Saunders D; De Souza PC; Henry L; Lupu F; Silasi-Mansat R; Ehrenshaft M; Mason RP; Gomez-Mejiba SE; Ramirez DC
    Biochim Biophys Acta; 2013 Dec; 1832(12):2153-61. PubMed ID: 23959048
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast.
    Ta HT; Li Z; Hagemeyer CE; Cowin G; Zhang S; Palasubramaniam J; Alt K; Wang X; Peter K; Whittaker AK
    Biomaterials; 2017 Jul; 134():31-42. PubMed ID: 28453956
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Endothelial cell-derived microparticles loaded with iron oxide nanoparticles: feasibility of MR imaging monitoring in mice.
    Al Faraj A; Gazeau F; Wilhelm C; Devue C; Guérin CL; Péchoux C; Paradis V; Clément O; Boulanger CM; Rautou PE
    Radiology; 2012 Apr; 263(1):169-78. PubMed ID: 22332069
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Current limitations of molecular magnetic resonance imaging for tumors as evaluated with high-relaxivity CD105-specific iron oxide nanoparticles.
    Dassler K; Roohi F; Lohrke J; Ide A; Remmele S; Hütter J; Pietsch H; Pison U; Schütz G
    Invest Radiol; 2012 Jul; 47(7):383-91. PubMed ID: 22659596
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Leukocyte mimetic polysaccharide microparticles tracked in vivo on activated endothelium and in abdominal aortic aneurysm.
    Bonnard T; Serfaty JM; Journé C; Ho Tin Noe B; Arnaud D; Louedec L; Derkaoui SM; Letourneur D; Chauvierre C; Le Visage C
    Acta Biomater; 2014 Aug; 10(8):3535-45. PubMed ID: 24769117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.