These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26266604)

  • 1. Catechol and HCl Adsorption on TiO2(110) in Vacuum and at the Water-TiO2 Interface.
    Kristoffersen HH; Shea JE; Metiu H
    J Phys Chem Lett; 2015 Jun; 6(12):2277-81. PubMed ID: 26266604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface charge-transfer complex formation of catechol on titanium(IV) oxide and the application to bio-sensing.
    Murata Y; Hori H; Taga A; Tada H
    J Colloid Interface Sci; 2015 Nov; 458():305-9. PubMed ID: 26247381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of R-OH molecules on TiO2 surfaces at the solid-liquid interface.
    Sánchez VM; de la Llave E; Scherlis DA
    Langmuir; 2011 Mar; 27(6):2411-9. PubMed ID: 21314168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diaminoethane adsorption and water substitution on hydrated TiO2: a thermochemical study based on first-principles calculations.
    Hémeryck A; Motta A; Swiatowska J; Pereira-Nabais C; Marcus P; Costa D
    Phys Chem Chem Phys; 2013 Jul; 15(26):10824-34. PubMed ID: 23695502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of small organic molecules on anatase and rutile surfaces: a theoretical study.
    Köppen S; Langel W
    Phys Chem Chem Phys; 2008 Apr; 10(14):1907-15. PubMed ID: 18368183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fundamental understanding of catechol and water adsorption on a hydrophilic silica surface: exploring the underwater adhesion mechanism of mussels on an atomic scale.
    Mian SA; Yang LM; Saha LC; Ahmed E; Ajmal M; Ganz E
    Langmuir; 2014 Jun; 30(23):6906-14. PubMed ID: 24835420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water on titanium dioxide surface: a revisiting by reactive molecular dynamics simulations.
    Huang L; Gubbins KE; Li L; Lu X
    Langmuir; 2014 Dec; 30(49):14832-40. PubMed ID: 25423593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles.
    Ojamäe L; Aulin C; Pedersen H; Käll PO
    J Colloid Interface Sci; 2006 Apr; 296(1):71-8. PubMed ID: 16165144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilayer adsorption of water at a rutile TiO2)(110) surface: towards a realistic modeling by molecular dynamics.
    Kornherr A; Vogtenhuber D; Ruckenbauer M; Podloucky R; Zifferer G
    J Chem Phys; 2004 Aug; 121(8):3722-6. PubMed ID: 15303939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces.
    Thomas AG; Syres KL
    Chem Soc Rev; 2012 Jun; 41(11):4207-17. PubMed ID: 22517475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A spectroscopic and electrochemical approach to the study of the interactions and photoinduced electron transfer between catechol and anatase nanoparticles in aqueous solution.
    Lana-Villarreal T; Rodes A; Pérez JM; Gómez R
    J Am Chem Soc; 2005 Sep; 127(36):12601-11. PubMed ID: 16144408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switchable self-assembly of a bioinspired alkyl catechol at a solid/liquid interface: competitive interfacial, noncovalent, and solvent interactions.
    Saiz-Poseu J; Faraudo J; Figueras A; Alibes R; Busqué F; Ruiz-Molina D
    Chemistry; 2012 Mar; 18(10):3056-63. PubMed ID: 22290796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site competition during coadsorption of acetone with methanol and water on TiO2(110).
    Shen M; Henderson MA
    Langmuir; 2011 Aug; 27(15):9430-8. PubMed ID: 21692462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of surface polarity on water dynamics at the water/rutile TiO₂(110) interface.
    Ohto T; Mishra A; Yoshimune S; Nakamura H; Bonn M; Nagata Y
    J Phys Condens Matter; 2014 Jun; 26(24):244102. PubMed ID: 24862873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined NC-AFM and DFT study of the adsorption geometry of trimesic acid on rutile TiO2(110).
    Greuling A; Rahe P; Kaczmarski M; Kühnle A; Rohlfing M
    J Phys Condens Matter; 2010 Sep; 22(34):345008. PubMed ID: 21403252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of surface adsorbed catechol on tropospheric aerosol surrogates: heterogeneous ozonolysis and its effects on water uptake.
    Woodill LA; O'Neill EM; Hinrichs RZ
    J Phys Chem A; 2013 Jul; 117(27):5620-31. PubMed ID: 23782312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water driven adsorption of amino acids on the (101) anatase TiO₂ surface: an ab initio study.
    Agosta L; Zollo G; Arcangeli C; Buonocore F; Gala F; Celino M
    Phys Chem Chem Phys; 2015 Jan; 17(3):1556-61. PubMed ID: 25434879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of aqueous environment and surface defects on Arg-Gly-Asp peptide adsorption on titanium oxide surfaces investigated by molecular dynamics simulation.
    Zhang HP; Lu X; Leng Y; Watari F; Weng J; Feng B; Qu S
    J Biomed Mater Res A; 2011 Feb; 96(2):466-76. PubMed ID: 21171166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide-TiO2 surface interaction in solution by ab initio and molecular dynamics simulations.
    Carravetta V; Monti S
    J Phys Chem B; 2006 Mar; 110(12):6160-9. PubMed ID: 16553430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantum-mechanical study of the adsorption of prototype dye molecules on rutile-TiO2(110): a comparison between catechol and isonicotinic acid.
    Risplendi F; Cicero G; Mallia G; Harrison NM
    Phys Chem Chem Phys; 2013 Jan; 15(1):235-43. PubMed ID: 23160267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.