BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 26266734)

  • 1. Unusual Activity Trend for CO Oxidation on Pd(x)Au(140-x)@Pt Core@Shell Nanoparticle Electrocatalysts.
    Luo L; Zhang L; Henkelman G; Crooks RM
    J Phys Chem Lett; 2015 Jul; 6(13):2562-8. PubMed ID: 26266734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity.
    Anderson RM; Yancey DF; Zhang L; Chill ST; Henkelman G; Crooks RM
    Acc Chem Res; 2015 May; 48(5):1351-7. PubMed ID: 25938976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural analysis of PdAu dendrimer-encapsulated bimetallic nanoparticles.
    Weir MG; Knecht MR; Frenkel AI; Crooks RM
    Langmuir; 2010 Jan; 26(2):1137-46. PubMed ID: 19839631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic PdAu Interlayer Sandwiched into Pd/Pt Core/Shell Nanowires Achieves Superstable Oxygen Reduction Catalysis.
    Tao L; Huang B; Jin F; Yang Y; Luo M; Sun M; Liu Q; Gao F; Guo S
    ACS Nano; 2020 Sep; 14(9):11570-11578. PubMed ID: 32816456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An experimental and theoretical investigation of the inversion of pd@pt core@shell dendrimer-encapsulated nanoparticles.
    Anderson RM; Zhang L; Loussaert JA; Frenkel AI; Henkelman G; Crooks RM
    ACS Nano; 2013 Oct; 7(10):9345-53. PubMed ID: 24088084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface segregation and stability of core-shell alloy catalysts for oxygen reduction in acid medium.
    Ramírez-Caballero GE; Ma Y; Callejas-Tovar R; Balbuena PB
    Phys Chem Chem Phys; 2010 Mar; 12(9):2209-18. PubMed ID: 20165770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.
    Kuai L; Geng B; Wang S; Sang Y
    Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of Pd-Au bimetallic catalysts for CO oxidation reaction by DFT calculations.
    Zhang J; Jin H; Sullivan MB; Lim FC; Wu P
    Phys Chem Chem Phys; 2009 Mar; 11(9):1441-6. PubMed ID: 19224045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core.
    Mednikov EG; Jewell MC; Dahl LF
    J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction.
    Zhang J; Lima FH; Shao MH; Sasaki K; Wang JX; Hanson J; Adzic RR
    J Phys Chem B; 2005 Dec; 109(48):22701-4. PubMed ID: 16853957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction.
    Li X; Liu J; He W; Huang Q; Yang H
    J Colloid Interface Sci; 2010 Apr; 344(1):132-6. PubMed ID: 20060983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical synthesis and electrocatalytic properties of Au@Pt dendrimer-encapsulated nanoparticles.
    Yancey DF; Carino EV; Crooks RM
    J Am Chem Soc; 2010 Aug; 132(32):10988-9. PubMed ID: 20698651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pt@Pd(x)Cu(y)/C core-shell electrocatalysts for oxygen reduction reaction in fuel cells.
    Cochell T; Manthiram A
    Langmuir; 2012 Jan; 28(2):1579-87. PubMed ID: 22149212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction.
    Zhang L; Iyyamperumal R; Yancey DF; Crooks RM; Henkelman G
    ACS Nano; 2013 Oct; 7(10):9168-72. PubMed ID: 24041224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A density functional theory approach to mushroom-like platinum clusters on palladium-shell over Au core nanoparticles for high electrocatalytic activity.
    Duan S; Fang PP; Fan FR; Broadwell I; Yang FZ; Wu DY; Ren B; Amatore C; Luo Y; Xu X; Tian ZQ
    Phys Chem Chem Phys; 2011 Mar; 13(12):5441-9. PubMed ID: 21350738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction.
    Tripkovic V; Hansen HA; Rossmeisl J; Vegge T
    Phys Chem Chem Phys; 2015 May; 17(17):11647-57. PubMed ID: 25865333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titania-supported PdAu bimetallic catalysts prepared from dendrimer-encapsulated nanoparticle precursors.
    Scott RW; Sivadinarayana C; Wilson OM; Yan Z; Goodman DW; Crooks RM
    J Am Chem Soc; 2005 Feb; 127(5):1380-1. PubMed ID: 15686363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shaped Pd-Ni-Pt core-sandwich-shell nanoparticles: influence of Ni sandwich layers on catalytic electrooxidations.
    Sneed BT; Young AP; Jalalpoor D; Golden MC; Mao S; Jiang Y; Wang Y; Tsung CK
    ACS Nano; 2014 Jul; 8(7):7239-50. PubMed ID: 24896733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous syntheses of Pd@Pt and Cu@Ag core-shell nanoparticles using microwave-assisted core particle formation coupled with galvanic metal displacement.
    Miyakawa M; Hiyoshi N; Nishioka M; Koda H; Sato K; Miyazawa A; Suzuki TM
    Nanoscale; 2014 Aug; 6(15):8720-5. PubMed ID: 24948122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.