BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 26266734)

  • 21. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness.
    Li Y; Wang ZW; Chiu CY; Ruan L; Yang W; Yang Y; Palmer RE; Huang Y
    Nanoscale; 2012 Feb; 4(3):845-51. PubMed ID: 22159178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects.
    Wang JX; Inada H; Wu L; Zhu Y; Choi Y; Liu P; Zhou WP; Adzic RR
    J Am Chem Soc; 2009 Dec; 131(47):17298-302. PubMed ID: 19899768
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of Au@Pt Core-Shell Nanoparticles as Efficient Electrocatalyst for Methanol Electro-Oxidation.
    Higareda A; Kumar-Krishnan S; García-Ruiz AF; Maya-Cornejo J; Lopez-Miranda JL; Bahena D; Rosas G; Pérez R; Esparza R
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31752428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen.
    Alayoglu S; Nilekar AU; Mavrikakis M; Eichhorn B
    Nat Mater; 2008 Apr; 7(4):333-8. PubMed ID: 18345004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity.
    Lu CL; Prasad KS; Wu HL; Ho JA; Huang MH
    J Am Chem Soc; 2010 Oct; 132(41):14546-53. PubMed ID: 20873739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of a Pt-Decorated Au Nanoparticle Monolayer Floating on an Ionic Liquid by the Ionic Liquid/Metal Sputtering Method and Tunable Electrocatalytic Activities of the Resulting Monolayer.
    Sugioka D; Kameyama T; Kuwabata S; Yamamoto T; Torimoto T
    ACS Appl Mater Interfaces; 2016 May; 8(17):10874-83. PubMed ID: 27074631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal Stability of Co-Pt and Co-Au Core-Shell Structured Nanoparticles: Insights from Molecular Dynamics Simulations.
    Wen YH; Huang R; Shao GF; Sun SG
    J Phys Chem Lett; 2017 Sep; 8(17):4273-4278. PubMed ID: 28837772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microstructural Evolution of Au@Pt Core-Shell Nanoparticles under Electrochemical Polarization.
    Hong W; Li CW
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30977-30986. PubMed ID: 31365226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds.
    Bueno SLA; Ashberry HM; Shafei I; Skrabalak SE
    Acc Chem Res; 2021 Apr; 54(7):1662-1672. PubMed ID: 33377763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrocatalytic properties of Au@Pt nanoparticles: effects of Pt shell packing density and Au core size.
    Du B; Zaluzhna O; Tong YJ
    Phys Chem Chem Phys; 2011 Jun; 13(24):11568-74. PubMed ID: 21597636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled synthesis of dendritic Au@Pt core-shell nanomaterials for use as an effective fuel cell electrocatalyst.
    Wang S; Kristian N; Jiang S; Wang X
    Nanotechnology; 2009 Jan; 20(2):025605. PubMed ID: 19417274
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles.
    Tao F; Grass ME; Zhang Y; Butcher DR; Renzas JR; Liu Z; Chung JY; Mun BS; Salmeron M; Somorjai GA
    Science; 2008 Nov; 322(5903):932-4. PubMed ID: 18845713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced Oxygen Reduction Activity of Platinum Monolayer on Gold Nanoparticles.
    Shao M; Peles A; Shoemaker K; Gummalla M; Njoki PN; Luo J; Zhong CJ
    J Phys Chem Lett; 2011 Jan; 2(2):67-72. PubMed ID: 26295523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pt monolayer on porous Pd-Cu alloys as oxygen reduction electrocatalysts.
    Shao M; Shoemaker K; Peles A; Kaneko K; Protsailo L
    J Am Chem Soc; 2010 Jul; 132(27):9253-5. PubMed ID: 20565078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale.
    Oezaslan M; Heggen M; Strasser P
    J Am Chem Soc; 2012 Jan; 134(1):514-24. PubMed ID: 22129031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Core-shell PdAu nanocluster catalysts to suppress sulfur poisoning.
    Gao S; Wang L; Li H; Liu Z; Shi G; Peng J; Wang B; Wang W; Cho K
    Phys Chem Chem Phys; 2021 Jul; 23(28):15010-15019. PubMed ID: 34128008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. First principles computational study on the electrochemical stability of Pt-Co nanocatalysts.
    Noh SH; Seo MH; Seo JK; Fischer P; Han B
    Nanoscale; 2013 Sep; 5(18):8625-33. PubMed ID: 23897215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of Cu(core) Pt(shell) nanoparticles as model structures for core-shell electrocatalysts by direct platinum electrodeposition on copper.
    Kulp C; Gillmeister K; Widdra W; Bron M
    Chemphyschem; 2013 Apr; 14(6):1205-10. PubMed ID: 23463710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells.
    Zhang X; Yu S; Qiao L; Zheng W; Liu P
    J Chem Phys; 2015 May; 142(19):194710. PubMed ID: 26001476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.