These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 26266737)
1. Electrostatic Interactions Influence Protein Adsorption (but Not Desorption) at the Silica-Aqueous Interface. McUmber AC; Randolph TW; Schwartz DK J Phys Chem Lett; 2015 Jul; 6(13):2583-7. PubMed ID: 26266737 [TBL] [Abstract][Full Text] [Related]
2. Adsorption of bovine serum albumin on fused silica: Elucidation of protein-protein interactions by single-molecule fluorescence microscopy. Yeung KM; Lu ZJ; Cheung NH Colloids Surf B Biointerfaces; 2009 Mar; 69(2):246-50. PubMed ID: 19118986 [TBL] [Abstract][Full Text] [Related]
3. pH-dependence of single-protein adsorption and diffusion at a liquid chromatographic interface. Kisley L; Poongavanam MV; Kourentzi K; Willson RC; Landes CF J Sep Sci; 2016 Feb; 39(4):682-8. PubMed ID: 26377146 [TBL] [Abstract][Full Text] [Related]
4. Interfacial biocatalysis on charged and immobilized substrates: the roles of enzyme and substrate surface charge. Feller BE; Kellis JT; Cascão-Pereira LG; Robertson CR; Frank CW Langmuir; 2011 Jan; 27(1):250-63. PubMed ID: 21128607 [TBL] [Abstract][Full Text] [Related]
5. Adsorption kinetics of bovine serum albumin on fused silica: population heterogeneities revealed by single-molecule fluorescence microscopy. Kwok KC; Yeung KM; Cheung NH Langmuir; 2007 Feb; 23(4):1948-52. PubMed ID: 17279679 [TBL] [Abstract][Full Text] [Related]
6. The role of electrostatic interactions in protease surface diffusion and the consequence for interfacial biocatalysis. Feller BE; Kellis JT; Cascão-Pereira LG; Robertson CR; Frank CW Langmuir; 2010 Dec; 26(24):18916-25. PubMed ID: 21080656 [TBL] [Abstract][Full Text] [Related]
7. Energetics of protein adsorption on amine-functionalized mesostructured cellular foam silica. Kim J; Desch RJ; Thiel SW; Guliants VV; Pinto NG J Chromatogr A; 2011 Oct; 1218(43):7796-803. PubMed ID: 21930277 [TBL] [Abstract][Full Text] [Related]
8. The effect of salts in aqueous media on the formation of the BSA corona on SiO Givens BE; Wilson E; Fiegel J Colloids Surf B Biointerfaces; 2019 Jul; 179():374-381. PubMed ID: 30999116 [TBL] [Abstract][Full Text] [Related]
9. Protein adsorption into mesopores: a combination of electrostatic interaction, counterion release, and van der Waals forces. Moerz ST; Huber P Langmuir; 2014 Mar; 30(10):2729-37. PubMed ID: 24571263 [TBL] [Abstract][Full Text] [Related]
10. Lysozyme and bovine serum albumin adsorption on uncoated silica and AlOOH-coated silica particles: the influence of positively and negatively charged oxide surface coatings. Rezwan K; Meier LP; Gauckler LJ Biomaterials; 2005 Jul; 26(21):4351-7. PubMed ID: 15701363 [TBL] [Abstract][Full Text] [Related]
11. Electrostatically controlled swelling and adsorption of polyelectrolyte brush-grafted nanoparticles to the solid/liquid interface. Riley JK; Matyjaszewski K; Tilton RD Langmuir; 2014 Apr; 30(14):4056-65. PubMed ID: 24660872 [TBL] [Abstract][Full Text] [Related]
12. Electrostatic interactions in protein adsorption probed by comparing lysozyme and succinylated lysozyme. van der Veen M; Norde W; Stuart MC Colloids Surf B Biointerfaces; 2004 May; 35(1):33-40. PubMed ID: 15261053 [TBL] [Abstract][Full Text] [Related]
13. From repulsion to attraction and back to repulsion: the effect of NaCl, KCl, and CsCl on the force between silica surfaces in aqueous solution. Dishon M; Zohar O; Sivan U Langmuir; 2009 Mar; 25(5):2831-6. PubMed ID: 19437699 [TBL] [Abstract][Full Text] [Related]
14. Energy Landscape of Negatively Charged BSA Adsorbed on a Negatively Charged Silica Surface. Tokarczyk K; Kubiak-Ossowska K; Jachimska B; Mulheran PA J Phys Chem B; 2018 Apr; 122(14):3744-3753. PubMed ID: 29536734 [TBL] [Abstract][Full Text] [Related]
15. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500 [TBL] [Abstract][Full Text] [Related]
16. Adsorption of single DNA molecules at the water/fused-silica interface. Isailovic S; Li HW; Yeung ES J Chromatogr A; 2007 May; 1150(1-2):259-66. PubMed ID: 17054967 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of glycinin and β-conglycinin on silica and cellulose: surface interactions as a function of denaturation, pH, and electrolytes. Salas C; Rojas OJ; Lucia LA; Hubbe MA; Genzer J Biomacromolecules; 2012 Feb; 13(2):387-96. PubMed ID: 22229657 [TBL] [Abstract][Full Text] [Related]
18. Further studies on the contribution of electrostatic and hydrophobic interactions to protein adsorption on dye-ligand adsorbents. Zhang S; Sun Y Biotechnol Bioeng; 2001 Dec; 75(6):710-7. PubMed ID: 11745149 [TBL] [Abstract][Full Text] [Related]
19. Competitive inhibition of protein adsorption to silica surfaces by their coating with high density charge polyelectrolytes. Hornos F; Esquembre R; Gómez J Colloids Surf B Biointerfaces; 2020 Jul; 191():110993. PubMed ID: 32268266 [TBL] [Abstract][Full Text] [Related]