These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 26266761)

  • 1. Optical filter selection for high confidence discrimination of strongly overlapping infrared chemical spectra.
    Major KJ; Poutous MK; Ewing KJ; Dunnill KF; Sanghera JS; Aggarwal ID
    Anal Chem; 2015 Sep; 87(17):8798-808. PubMed ID: 26266761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic Optical-Filter Detection System for Discrimination of Infrared Chemical Signatures.
    Major KJ; Poutous MK; Dunnill KF; Deguzman PC; Sanghera JS; Aggarwal ID; Ewing KJ
    Anal Chem; 2016 Dec; 88(23):11491-11497. PubMed ID: 27934095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical procedure to assess the performance characteristics of a non-spectroscopic infrared optical sensor for discrimination of chemical vapors.
    Major KJ; Poutous MK; Aggarwal ID; Sanghera JS; Ewing KJ
    Appl Opt; 2018 Oct; 57(30):8903-8913. PubMed ID: 30461877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative discrimination spectral detection method for the identification of vapors using overlapping broad spectral filters.
    Poutous MK; Major KJ; Ewing KJ; Sanghera J; Aggarwal I
    Appl Spectrosc; 2015 Mar; 69(3):305-13. PubMed ID: 25665186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic Optical-Filter Sensor System for Discrimination of Infrared Chemical Signatures Against a Cold Sky Background.
    McGinnis CL; Frantz JA; Sanghera JS; Ewing KJ
    Appl Spectrosc; 2024 Jun; ():37028241257267. PubMed ID: 38860879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination Between Explosive Materials and Isomers Using a Human Color Vision-Inspired Sensing Method.
    Major KJ; Hutchens TC; Wilson CR; Poutous MK; Aggarwal ID; Sanghera JS; Ewing KJ
    Appl Spectrosc; 2019 May; 73(5):520-528. PubMed ID: 30650986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filter Selection for Optimizing the Spectral Sensitivity of Broadband Multispectral Cameras Based on Maximum Linear Independence.
    Li SX
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29735948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design considerations for near-infrared filter photometry: effects of noise sources and selectivity.
    Tarumi T; Amerov AK; Arnold MA; Small GW
    Appl Spectrosc; 2009 Jun; 63(6):700-8. PubMed ID: 19531298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multispectral interference filter arrays with compensation of angular dependence or extended spectral range.
    Frey L; Masarotto L; Armand M; Charles ML; Lartigue O
    Opt Express; 2015 May; 23(9):11799-812. PubMed ID: 25969271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The optical convolution of time functions.
    Weaver CS; Ramsey SD; Goodman JW; Rosie AM
    Appl Opt; 1970 Jul; 9(7):1672-82. PubMed ID: 20076441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical filter for highlighting spectral features part I: design and development of the filter for discrimination of human skin with and without an application of cosmetic foundation.
    Nishino K; Nakamura M; Matsumoto M; Tanno O; Nakauchi S
    Opt Express; 2011 Mar; 19(7):6020-30. PubMed ID: 21451626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Miniaturised Infrared Spectrophotometer for Low Power Consumption Multi-Gas Sensing.
    Muhiyudin M; Hutson D; Gibson D; Waddell E; Song S; Ahmadzadeh S
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32660151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A High Optical Throughput Spectral Imaging Technique Using Broadband Filters.
    Wang D; Chen Z; Zhang X; Fu T; OuYang R; Bi G; Jin L; Wang X
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32781628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces.
    Craig B; Shrestha VR; Meng J; Cadusch JJ; Crozier KB
    Opt Lett; 2018 Sep; 43(18):4481-4484. PubMed ID: 30211895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas.
    Aouani H; Šípová H; Rahmani M; Navarro-Cia M; Hegnerová K; Homola J; Hong M; Maier SA
    ACS Nano; 2013 Jan; 7(1):669-75. PubMed ID: 23199257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factorial-based response-surface modeling with confidence intervals for optimizing thermal-optical transmission analysis of atmospheric black carbon.
    Conny JM; Norris GA; Gould TR
    Anal Chim Acta; 2009 Mar; 635(2):144-56. PubMed ID: 19216871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach.
    Röttgers R; Gehnke S
    Appl Opt; 2012 Mar; 51(9):1336-51. PubMed ID: 22441480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 2: Simulation driven design.
    Brooke H; Baranowski MR; McCutcheon JN; Morgan SL; Myrick ML
    Anal Chem; 2010 Oct; 82(20):8421-6. PubMed ID: 20863137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Microscopic infrared spectral imaging of oily core].
    Huang QS; Yu ZX; Li J; Chen C
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Feb; 29(2):451-4. PubMed ID: 19445225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.