These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
502 related articles for article (PubMed ID: 26266803)
41. Influence of geographical origin and botanical species on the content of extractives in American, French, and East European oak woods. Prida A; Puech JL J Agric Food Chem; 2006 Oct; 54(21):8115-26. PubMed ID: 17032018 [TBL] [Abstract][Full Text] [Related]
42. Influence of the species and geographical location on volatile composition of Spanish oak wood (Quercus petraea Liebl. and Quercus robur L.). Guchu E; Díaz-Maroto MC; Díaz-Maroto IJ; Vila-Lameiro P; Pérez-Coello MS J Agric Food Chem; 2006 Apr; 54(8):3062-6. PubMed ID: 16608231 [TBL] [Abstract][Full Text] [Related]
43. Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2. Arsić J; Stojanović M; Petrovičová L; Noyer E; Milanović S; Světlík J; Horáček P; Krejza J PLoS One; 2021; 16(10):e0259054. PubMed ID: 34679119 [TBL] [Abstract][Full Text] [Related]
44. One dry summer: a leaf proteome study on the response of oak to drought exposure. Sergeant K; Spiess N; Renaut J; Wilhelm E; Hausman JF J Proteomics; 2011 Aug; 74(8):1385-95. PubMed ID: 21439417 [TBL] [Abstract][Full Text] [Related]
45. Ozone risk assessment in three oak species as affected by soil water availability. Hoshika Y; Moura B; Paoletti E Environ Sci Pollut Res Int; 2018 Mar; 25(9):8125-8136. PubMed ID: 28748441 [TBL] [Abstract][Full Text] [Related]
46. Contrasting net primary productivity and carbon distribution between neighboring stands of Quercus robur and Pinus sylvestris. Curiel Yuste J; Konôpka B; Janssens IA; Coenen K; Xiao CW; Ceulemans R Tree Physiol; 2005 Jun; 25(6):701-12. PubMed ID: 15805090 [TBL] [Abstract][Full Text] [Related]
47. Habitat Degradation Facilitates the Invasion of Neophytes: A Resurvey Study Based on Permanent Vegetation Plots in Oak Forests in Slovenia (Europe). Kermavnar J; Kutnar L Plants (Basel); 2024 Mar; 13(7):. PubMed ID: 38611491 [TBL] [Abstract][Full Text] [Related]
48. Nitrogen dynamics in oak model ecosystems subjected to air warming and drought on two different soils. Kuster TM; Schleppi P; Hu B; Schulin R; Günthardt-Goerg MS Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():220-9. PubMed ID: 23279296 [TBL] [Abstract][Full Text] [Related]
49. Wood anatomical responses of oak saplings exposed to air warming and soil drought. Fonti P; Heller O; Cherubini P; Rigling A; Arend M Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():210-9. PubMed ID: 22612857 [TBL] [Abstract][Full Text] [Related]
50. Demography and recruitment limitations of three oak species in California. Tyler CM; Kuhn B; Davis FW Q Rev Biol; 2006 Jun; 81(2):127-52. PubMed ID: 16776062 [TBL] [Abstract][Full Text] [Related]
51. Strength, diversity and plasticity of postmating reproductive barriers between two hybridizing oak species (Quercus robur L. and Quercus petraea (Matt) Liebl.). Abadie P; Roussel G; Dencausse B; Bonnet C; Bertocchi E; Louvet JM; Kremer A; Garnier-Géré P J Evol Biol; 2012 Jan; 25(1):157-73. PubMed ID: 22092648 [TBL] [Abstract][Full Text] [Related]
52. Growth cessation uncouples isotopic signals in leaves and tree rings of drought-exposed oak trees. Pflug EE; Siegwolf R; Buchmann N; Dobbertin M; Kuster TM; Günthardt-Goerg MS; Arend M Tree Physiol; 2015 Oct; 35(10):1095-105. PubMed ID: 26377873 [TBL] [Abstract][Full Text] [Related]
53. Initial oak regeneration responses to experimental warming along microclimatic and macroclimatic gradients. Meeussen C; De Pauw K; Sanczuk P; Brunet J; Cousins SAO; Gasperini C; Hedwall PO; Iacopetti G; Lenoir J; Plue J; Selvi F; Spicher F; Uria Diez J; Verheyen K; Vangansbeke P; De Frenne P Plant Biol (Stuttg); 2022 Aug; 24(5):745-757. PubMed ID: 35373433 [TBL] [Abstract][Full Text] [Related]
54. Increased water-use efficiency translates into contrasting growth patterns of Scots pine and sessile oak at their southern distribution limits. Martínez-Sancho E; Dorado-Liñán I; Gutiérrez Merino E; Matiu M; Helle G; Heinrich I; Menzel A Glob Chang Biol; 2018 Mar; 24(3):1012-1028. PubMed ID: 29030903 [TBL] [Abstract][Full Text] [Related]
55. Response of sessile oak seedlings (Quercus petraea) to flooding: an integrated study. Folzer H; Dat JF; Capelli N; Rieffel D; Badot PM Tree Physiol; 2006 Jun; 26(6):759-66. PubMed ID: 16510391 [TBL] [Abstract][Full Text] [Related]
56. Molecular plasticity to soil water deficit differs between sessile oak (Quercus Petraea (Matt.) Liebl.) high- and low-water use efficiency genotypes. Le Provost G; Gerardin T; Plomion C; Brendel O Tree Physiol; 2022 Dec; 42(12):2546-2562. PubMed ID: 35867420 [TBL] [Abstract][Full Text] [Related]
57. A neighborhood analysis of the consequences of Quercus suber decline for regeneration dynamics in Mediterranean forests. Ibáñez B; Gómez-Aparicio L; Stoll P; Ávila JM; Pérez-Ramos IM; Marañón T PLoS One; 2015; 10(2):e0117827. PubMed ID: 25706723 [TBL] [Abstract][Full Text] [Related]
58. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA. Dickinson MB; Hutchinson TF; Dietenberger M; Matt F; Peters MP PLoS One; 2016; 11(8):e0159997. PubMed ID: 27536964 [TBL] [Abstract][Full Text] [Related]
59. Stand density, tree social status and water stress influence allocation in height and diameter growth of Quercus petraea (Liebl.). Trouvé R; Bontemps JD; Seynave I; Collet C; Lebourgeois F Tree Physiol; 2015 Oct; 35(10):1035-46. PubMed ID: 26232785 [TBL] [Abstract][Full Text] [Related]
60. Seasonal changes in carbon and nitrogen compound concentrations in a Quercus petraea chronosequence. Gilson A; Barthes L; Delpierre N; Dufrêne É; Fresneau C; Bazot S Tree Physiol; 2014 Jul; 34(7):716-29. PubMed ID: 25122620 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]