These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2626683)

  • 21. Effects of acoustic trauma on the representation of the vowel "eh" in cat auditory nerve fibers.
    Miller RL; Schilling JR; Franck KR; Young ED
    J Acoust Soc Am; 1997 Jun; 101(6):3602-16. PubMed ID: 9193048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural correlates of auditory fatigue: frequency-dependent changes in activity of single cochlear nerve fibers.
    Lonsbury-Martin BL; Meikle MB
    J Neurophysiol; 1978 Jul; 41(4):987-1006. PubMed ID: 681996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Boundaries of two-tone rate suppression of cochlear-nerve activity.
    Schmiedt RA
    Hear Res; 1982 Aug; 7(3):335-51. PubMed ID: 7118735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Middle Ear Muscle Reflex in Rat: Developing a Biomarker of Auditory Nerve Degeneration.
    Chertoff ME; Martz A; Sakumura JT; Kamerer AM; Diaz F
    Ear Hear; 2018; 39(3):605-614. PubMed ID: 29189520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal integration of sound pressure determines thresholds of auditory-nerve fibers.
    Heil P; Neubauer H
    J Neurosci; 2001 Sep; 21(18):7404-15. PubMed ID: 11549751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Timing of cochlear responses inferred from frequency-threshold tuning curves of auditory-nerve fibers.
    Temchin AN; Recio-Spinoso A; Ruggero MA
    Hear Res; 2011 Feb; 272(1-2):178-86. PubMed ID: 20951191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Factors that influence rate-versus-intensity relations in single cochlear nerve fibers of the gerbil.
    Ohlemiller KK; Echteler SM; Siegel JH
    J Acoust Soc Am; 1991 Jul; 90(1):274-87. PubMed ID: 1652601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activity of primary auditory neurons in the cochlear ganglion of the emu Dromaius novaehollandiae: spontaneous discharge, frequency tuning, and phase locking.
    Manley GA; Köppl C; Yates GK
    J Acoust Soc Am; 1997 Mar; 101(3):1560-73. PubMed ID: 9069626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural response to very low-frequency sound in the avian cochlear nucleus.
    Warchol ME; Dallos P
    J Comp Physiol A; 1989 Nov; 166(1):83-95. PubMed ID: 2600887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Responses of auditory nerve fibers to harmonic and mistuned complex tones.
    Sinex DG; Guzik H; Li H; Henderson Sabes J
    Hear Res; 2003 Aug; 182(1-2):130-9. PubMed ID: 12948608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neuroethology of the katydid T-cell. I. Tuning and responses to pure tones.
    Faure PA; Hoy RR
    J Exp Biol; 2000 Nov; 203(Pt 21):3225-42. PubMed ID: 11023843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Representation of cochlear innervation patterns in single auditory nerve fiber responses.
    Nomoto M
    Jpn J Physiol; 1980; 30(1):31-40. PubMed ID: 6770157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relations between frequency selectivity and two-tone rate suppression in lizard cochlear-nerve fibers.
    Holton T
    Hear Res; 1980 Jan; 2(1):21-38. PubMed ID: 7351389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic encoding of amplitude-modulated sounds at the level of auditory nerve fibers.
    Rimskaya-Korsakova LK; Telepnev VN; Dubrovksii NA
    Neurosci Behav Physiol; 2005 Jan; 35(1):71-81. PubMed ID: 15739790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic response properties of lagenar nerve fibers in the sleeper goby, Dormitator latifrons.
    Lu Z; Xu Z; Buchser WJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Dec; 189(12):889-905. PubMed ID: 14586545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discharge patterns of cochlear ganglion neurons in the chicken.
    Salvi RJ; Saunders SS; Powers NL; Boettcher FA
    J Comp Physiol A; 1992 Feb; 170(2):227-41. PubMed ID: 1583607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dependence of discharge rate on sound pressure level in cochlear nerve fibers of the alligator lizard: implications for cochlear mechanisms.
    Eatock RA; Weiss TF; Otto KL
    J Neurophysiol; 1991 Jun; 65(6):1580-97. PubMed ID: 1875264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaural crosstalk in the cat.
    Gibson DJ
    Hear Res; 1982 Aug; 7(3):325-33. PubMed ID: 7118734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A population study of cochlear nerve fibers: comparison of spatial distributions of average-rate and phase-locking measures of responses to single tones.
    Kim DO; Molnar CE
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):16-30. PubMed ID: 430109
    [No Abstract]   [Full Text] [Related]  

  • 40. Antagonistic effects of perilymphatic calcium and magnesium on the activity of single cochlear afferent neurons.
    Siegel JH; Relkin EM
    Hear Res; 1987; 28(2-3):131-47. PubMed ID: 3654385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.