These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26266856)

  • 21. Observation of the flexoelectricity of a SrTiO
    Lu C; Nakajima N; Maruyama H
    J Phys Condens Matter; 2017 Feb; 29(4):045702. PubMed ID: 27882902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noncovalent interaction of carbon nanostructures.
    Umadevi D; Panigrahi S; Sastry GN
    Acc Chem Res; 2014 Aug; 47(8):2574-81. PubMed ID: 25032482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
    Bichoutskaia E; Pyper NC
    J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toward Negatively Curved Carbons.
    Pun SH; Miao Q
    Acc Chem Res; 2018 Jul; 51(7):1630-1642. PubMed ID: 29974752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Covalent functionalization of dipole-modulating molecules on trilayer graphene: an avenue for graphene-interfaced molecular machines.
    Nguyen P; Li J; Sreeprasad TS; Jasuja K; Mohanty N; Ikenberry M; Hohn K; Shenoy VB; Berry V
    Small; 2013 Nov; 9(22):3823-8. PubMed ID: 23713056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of C(59)Si with Si based clusters: a study of Janus nanostructures.
    Wu MM; Zhou X; Zhou J; Sun Q; Wang Q; Jena P
    J Phys Condens Matter; 2010 Jul; 22(27):275303. PubMed ID: 21399252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The generation of piezoelectricity and flexoelectricity in graphene by breaking the materials symmetries.
    Javvaji B; He B; Zhuang X
    Nanotechnology; 2018 Jun; 29(22):225702. PubMed ID: 29522422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surfactant-free water-processable photoconductive all-carbon composite.
    Tung VC; Huang JH; Tevis I; Kim F; Kim J; Chu CW; Stupp SI; Huang J
    J Am Chem Soc; 2011 Apr; 133(13):4940-7. PubMed ID: 21391674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of carbon-based nanomaterials in sample preparation: a review.
    Zhang BT; Zheng X; Li HF; Lin JM
    Anal Chim Acta; 2013 Jun; 784():1-17. PubMed ID: 23746402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap.
    Qi JS; Huang JY; Feng J; Shi da N; Li J
    ACS Nano; 2011 May; 5(5):3475-82. PubMed ID: 21456598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel silicon-carbon fullerene-like nanostructures: an Ab initio study on the stability of Si54C6 and Si60C6 clusters.
    Srinivasan A; Ray AK
    J Nanosci Nanotechnol; 2006 Jan; 6(1):43-53. PubMed ID: 16573068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chirality in curved polyaromatic systems.
    Rickhaus M; Mayor M; Juríček M
    Chem Soc Rev; 2017 Mar; 46(6):1643-1660. PubMed ID: 28225107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dipole moments from atomic-number-dependent potentials in analytic density-functional theory.
    Dunlap BI; Karna SP; Zope RR
    J Chem Phys; 2006 Dec; 125(21):214104. PubMed ID: 17166012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shape and complexity at the atomic scale: the case of layered nanomaterials.
    Terrones H; Terrones M; López-Urías F; Rodríguez-Manzo JA; Mackay AL
    Philos Trans A Math Phys Eng Sci; 2004 Oct; 362(1823):2039-63. PubMed ID: 15370471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchical graphene nanocones over 3D platform of carbon fabrics: a route towards fully foldable graphene based electron source.
    Maiti UN; Maiti S; Das NS; Chattopadhyay KK
    Nanoscale; 2011 Oct; 3(10):4135-41. PubMed ID: 21850356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical anisotropies of carbon nanotubes and fullerenes caused by the curvature directivity.
    Li J; Jia G; Zhang Y
    Chemistry; 2007; 13(22):6430-6. PubMed ID: 17492818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fullerenes, carbon nanotubes, and graphene for molecular electronics.
    Pinzón JR; Villalta-Cerdas A; Echegoyen L
    Top Curr Chem; 2012; 312():127-74. PubMed ID: 21894583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of tube curvature on the ground-state magnetism of axially confined single-walled carbon nanotubes of the zigzag-type.
    Wu J; Hagelberg F
    Chemphyschem; 2013 Jun; 14(8):1696-702. PubMed ID: 23589448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A charge-dipole model for the static polarizability of nanostructures including aliphatic, olephinic, and aromatic systems.
    Mayer A; Astrand PO
    J Phys Chem A; 2008 Feb; 112(6):1277-85. PubMed ID: 18198848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward Controlled Growth of Helicity-Specific Carbon Nanotubes.
    Santos EJ; Nørskov JK; Harutyunyan AR; Abild-Pedersen F
    J Phys Chem Lett; 2015 Jun; 6(12):2232-7. PubMed ID: 26266596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.