These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 26266870)

  • 1. Temperature-Dependent Permeability of the Ligand Shell of PbS Quantum Dots Probed by Electron Transfer to Benzoquinone.
    Aruda KO; Bohlmann Kunz M; Tagliazucchi M; Weiss EA
    J Phys Chem Lett; 2015 Jul; 6(14):2841-6. PubMed ID: 26266870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-time scale photoinduced electron transfer from PbS quantum dots to a molecular acceptor.
    Knowles KE; Malicki M; Weiss EA
    J Am Chem Soc; 2012 Aug; 134(30):12470-3. PubMed ID: 22813233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition and Permeability of Oleate Adlayers of CdS Quantum Dots upon Dilution to Photoluminescence-Relevant Concentrations.
    Nepomnyashchii AB; Harris RD; Weiss EA
    Anal Chem; 2016 Mar; 88(6):3310-6. PubMed ID: 26901485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of the Redox Activity of Quantum Dots through Introduction of Fluoroalkanethiolates into Their Ligand Shells.
    Weinberg DJ; He C; Weiss EA
    J Am Chem Soc; 2016 Feb; 138(7):2319-26. PubMed ID: 26820492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chemical environments of oleate species within samples of oleate-coated PbS quantum dots.
    Cass LC; Malicki M; Weiss EA
    Anal Chem; 2013 Jul; 85(14):6974-9. PubMed ID: 23786216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films.
    Zhao H; Fan Z; Liang H; Selopal GS; Gonfa BA; Jin L; Soudi A; Cui D; Enrichi F; Natile MM; Concina I; Ma D; Govorov AO; Rosei F; Vomiero A
    Nanoscale; 2014 Jun; 6(12):7004-11. PubMed ID: 24839954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous multielectron transfer from the surfaces of PbS quantum dots to tetracyanoquinodimethane.
    Knowles KE; Malicki M; Parameswaran R; Cass LC; Weiss EA
    J Am Chem Soc; 2013 May; 135(19):7264-71. PubMed ID: 23611474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PbS/CdS Core-Shell Quantum Dots Suppress Charge Transfer and Enhance Triplet Transfer.
    Huang Z; Xu Z; Mahboub M; Li X; Taylor JW; Harman WH; Lian T; Tang ML
    Angew Chem Int Ed Engl; 2017 Dec; 56(52):16583-16587. PubMed ID: 29141118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of the Redox Activity of PbS Quantum Dots by Tuning Electrostatic Interactions at the Quantum Dot/Solvent Interface.
    He C; Weinberg DJ; Nepomnyashchii AB; Lian S; Weiss EA
    J Am Chem Soc; 2016 Jul; 138(28):8847-54. PubMed ID: 27341608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gating of hole transfer from photoexcited PbS quantum dots to aminoferrocene by the ligand shell of the dots.
    Malicki M; Knowles KE; Weiss EA
    Chem Commun (Camb); 2013 May; 49(39):4400-2. PubMed ID: 22684304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamic surface chemistry of colloidal metal chalcogenide quantum dots.
    Grisorio R; Quarta D; Fiore A; Carbone L; Suranna GP; Giansante C
    Nanoscale Adv; 2019 Sep; 1(9):3639-3646. PubMed ID: 36133571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-organization of colloidal PbS quantum dots into highly ordered superlattices.
    Baranov AV; Ushakova EV; Golubkov VV; Litvin AP; Parfenov PS; Fedorov AV; Berwick K
    Langmuir; 2015 Jan; 31(1):506-13. PubMed ID: 25514192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum yield regeneration: influence of neutral ligand binding on photophysical properties in colloidal core/shell quantum dots.
    Shen Y; Tan R; Gee MY; Greytak AB
    ACS Nano; 2015 Mar; 9(3):3345-59. PubMed ID: 25753127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating photoinduced charge transfer in double- and single-emission PbS@CdS core@shell quantum dots.
    Zhao H; Liang H; Gonfa BA; Chaker M; Ozaki T; Tijssen P; Vidal F; Ma D
    Nanoscale; 2014 Jan; 6(1):215-25. PubMed ID: 24132400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible Modulation of the Electrostatic Potential of a Colloidal Quantum Dot through the Protonation Equilibrium of Its Ligands.
    He C; Zhang Z; Wang C; Jiang Y; Weiss EA
    J Phys Chem Lett; 2017 Oct; 8(20):4981-4987. PubMed ID: 28949145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile PbS Quantum Dot Ligand Exchange Systems in the Presence of Pb-Thiolates.
    Shestha A; Yin Y; Andersson GG; Spooner NA; Qiao S; Dai S
    Small; 2017 Feb; 13(5):. PubMed ID: 27860268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the solvent polarity effects on surfactant-capped nanoparticles.
    Leekumjorn S; Gullapalli S; Wong MS
    J Phys Chem B; 2012 Nov; 116(43):13063-70. PubMed ID: 23088706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots.
    Lai LH; Protesescu L; Kovalenko MV; Loi MA
    Phys Chem Chem Phys; 2014 Jan; 16(2):736-42. PubMed ID: 24270835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-amplified ligand disorder in CdSe quantum dots determined by electron and coherent vibrational spectroscopies.
    Frederick MT; Achtyl JL; Knowles KE; Weiss EA; Geiger FM
    J Am Chem Soc; 2011 May; 133(19):7476-81. PubMed ID: 21513302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dithiocarbamates as capping ligands for water-soluble quantum dots.
    Zhang Y; Schnoes AM; Clapp AR
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3384-95. PubMed ID: 21053924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.