These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 26267117)
1. Oxygen-18 Kinetic Isotope Effects of Nonheme Iron Enzymes HEPD and MPnS Support Iron(III) Superoxide as the Hydrogen Abstraction Species. Zhu H; Peck SC; Bonnot F; van der Donk WA; Klinman JP J Am Chem Soc; 2015 Aug; 137(33):10448-51. PubMed ID: 26267117 [TBL] [Abstract][Full Text] [Related]
2. Oxygen and hydrogen isotope effects in an active site tyrosine to phenylalanine mutant of peptidylglycine alpha-hydroxylating monooxygenase: mechanistic implications. Francisco WA; Blackburn NJ; Klinman JP Biochemistry; 2003 Feb; 42(7):1813-9. PubMed ID: 12590568 [TBL] [Abstract][Full Text] [Related]
3. Fenton-Derived OH Radicals Enable the MPnS Enzyme to Convert 2-Hydroxyethylphosphonate to Methylphosphonate: Insights from Ab Initio QM/MM MD Simulations. Wang B; Cao Z; Rovira C; Song J; Shaik S J Am Chem Soc; 2019 Jun; 141(23):9284-9291. PubMed ID: 31132257 [TBL] [Abstract][Full Text] [Related]
4. A common late-stage intermediate in catalysis by 2-hydroxyethyl-phosphonate dioxygenase and methylphosphonate synthase. Peck SC; Chekan JR; Ulrich EC; Nair SK; van der Donk WA J Am Chem Soc; 2015 Mar; 137(9):3217-20. PubMed ID: 25699631 [TBL] [Abstract][Full Text] [Related]
5. A hybrid density functional study of O-O bond cleavage and phenyl ring hydroxylation for a biomimetic non-heme iron complex. Borowski T; Bassan A; Siegbahn PE Inorg Chem; 2004 May; 43(10):3277-91. PubMed ID: 15132638 [TBL] [Abstract][Full Text] [Related]
6. Properties and reactivities of nonheme iron(IV)-oxo versus iron(V)-oxo: long-range electron transfer versus hydrogen atom abstraction. Karamzadeh B; Singh D; Nam W; Kumar D; de Visser SP Phys Chem Chem Phys; 2014 Nov; 16(41):22611-22. PubMed ID: 25231726 [TBL] [Abstract][Full Text] [Related]
7. Ferric superoxide and ferric hydroxide are used in the catalytic mechanism of hydroxyethylphosphonate dioxygenase: a density functional theory investigation. Hirao H; Morokuma K J Am Chem Soc; 2010 Dec; 132(50):17901-9. PubMed ID: 21121666 [TBL] [Abstract][Full Text] [Related]
8. Go it alone: four-electron oxidations by mononuclear non-heme iron enzymes. Peck SC; van der Donk WA J Biol Inorg Chem; 2017 Apr; 22(2-3):381-394. PubMed ID: 27783267 [TBL] [Abstract][Full Text] [Related]
9. Redox properties of a mononuclear copper(II)-superoxide complex. Tano T; Okubo Y; Kunishita A; Kubo M; Sugimoto H; Fujieda N; Ogura T; Itoh S Inorg Chem; 2013 Sep; 52(18):10431-7. PubMed ID: 24004030 [TBL] [Abstract][Full Text] [Related]
10. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Su Q; Klinman JP Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824 [TBL] [Abstract][Full Text] [Related]
12. Oxygen-18 kinetic isotope effects in the dopamine beta-monooxygenase reaction: evidence for a new chemical mechanism in non-heme metallomonooxygenases. Tian G; Berry JA; Klinman JP Biochemistry; 1994 Jan; 33(1):226-34. PubMed ID: 8286345 [TBL] [Abstract][Full Text] [Related]
13. Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics. Wang Y; Li J; Liu A J Biol Inorg Chem; 2017 Apr; 22(2-3):395-405. PubMed ID: 28084551 [TBL] [Abstract][Full Text] [Related]
14. Trapping and spectroscopic characterization of an FeIII-superoxo intermediate from a nonheme mononuclear iron-containing enzyme. Mbughuni MM; Chakrabarti M; Hayden JA; Bominaar EL; Hendrich MP; Münck E; Lipscomb JD Proc Natl Acad Sci U S A; 2010 Sep; 107(39):16788-93. PubMed ID: 20837547 [TBL] [Abstract][Full Text] [Related]
15. Kinetic mechanism and intrinsic isotope effects for the peptidylglycine alpha-amidating enzyme reaction. Francisco WA; Merkler DJ; Blackburn NJ; Klinman JP Biochemistry; 1998 Jun; 37(22):8244-52. PubMed ID: 9609721 [TBL] [Abstract][Full Text] [Related]
16. Can ferric-superoxide act as a potential oxidant in P450(cam)? QM/MM investigation of hydroxylation, epoxidation, and sulfoxidation. Lai W; Shaik S J Am Chem Soc; 2011 Apr; 133(14):5444-52. PubMed ID: 21413763 [TBL] [Abstract][Full Text] [Related]
17. The reaction mechanism of hydroxyethylphosphonate dioxygenase: a QM/MM study. Du L; Gao J; Liu Y; Zhang D; Liu C Org Biomol Chem; 2012 Feb; 10(5):1014-24. PubMed ID: 22143311 [TBL] [Abstract][Full Text] [Related]
18. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes. de Visser SP; Shaik S J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the structure and reactivity of monocopper-oxygen complexes supported by beta-diketiminate and anilido-imine ligands. Gherman BF; Tolman WB; Cramer CJ J Comput Chem; 2006 Dec; 27(16):1950-61. PubMed ID: 17019721 [TBL] [Abstract][Full Text] [Related]
20. Modular behavior of tauD provides insight into the origin of specificity in alpha-ketoglutarate-dependent nonheme iron oxygenases. McCusker KP; Klinman JP Proc Natl Acad Sci U S A; 2009 Nov; 106(47):19791-5. PubMed ID: 19892731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]